30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Netze von geraden Prismen 07:01 min

Textversion des Videos

Transkript Netze von geraden Prismen

Hallo! Ich bin Thekla. Was, meinst du, haben das Dach eines Hauses, dieser unangespitzte Buntstift und diese Holzkiste gemeinsam? Sie sind allesamt gerade Prismen! Heute zeige ich dir, wie du Netze von geraden Prismen zeichnen kannst. Dazu wiederholen wir zuerst, was ein gerades Prisma ist. Hierbei ist es vor allem wichtig, die Begriffe Grundfläche, Seitenfläche, Mantelfläche, Höhe und Oberfläche eines Prismas richtig zuordnen zu können. Dann erkläre ich dir, was das Netz eines Prismas ist und wie es entsteht. Danach erstellen wir zusammen zwei Netze. Schauen wir uns also an, was ein gerades Prisma ist. Hier habe ich einige Beispiele von geraden Prismen für dich vorbereitet. Was haben sie gemeinsam? Alle haben eine Grund- und eine Deckfläche, die zueinander kongruent, das heißt deckungsgleich, sind. Hier ist das zum Beispiel ein Dreieck und hier ein Rechteck; und schau mal hier: Ein Sechseck. Prismen allgemein sind Körper, die durch das Verschieben eines Vielecks im Raum entstehen. Im Gegensatz zu schiefen Prismen, erfolgt bei den geraden Prismen eine senkrechte parallele Verschiedbung von der Grundfläche zur Deckfläche. Dadurch entstehen als Seitenflächen Rechtecke. Der Abstand zwischen der Grund- und Deckfläche heißt Höhe des Prismas. Alle Seitenflächen zusammen betrachtet heißen Mantelfläche oder auch Mantel des Prismas. Die gesamte Oberfläche des Prismas setzt sich aus der Grund-, Deck- und der Mantelfläche zusammen. Wenn ich im Folgenden von Prismen spreche, meine ich stets gerade Prismen.

Zusammenfassend ist ein gerades Prisma ein Körper mit zwei zueinander parallelen, kongruenten Vielecken mit rechteckigen Seitenflächen, die senkrecht auf der Grundfläche bzw. Deckfläche stehen. Schau dir nochmals die Prismen von eben an: Dieses Prisma nennt man dreiseitiges, dieses vierseitiges und dieses sechsseitiges Prisma. Du siehst also, dass dein Prisma so benannt wird, wie deine Grundfläche Ecken besitzt. Du hast heute schon viel über ein Prisma an sich gehört. Aber was ist nun das Netz eines geraden Prismas? Muss man sich hier etwa ein Fischenetz oder ein Spinnennetz vorstellen?

Nein, das Netz eines Prismas sieht im Grunde wie eine Bastelanleitung aus. Betrachte zum Beispiel mal dieses Netz eines dreiseitigen Prismas. Falte ich alle gestrichelten Kanten und klebe sie zusammen erhalte ich mein dreiseitiges Prisma. Jetzt lass uns doch mal probieren, selber das Netz eines Prismas zu zeichnen. Dazu brauchen wir natürlich zu aller erst - genau - ein Prisma. Hier habe ich ein fünfseitiges Prisma. Die Höhe beträgt 15 cm. Ich schaue mir an, wie die Grund- bzw. Deckfläche aussieht: Hier ist das ein regelmäßiges Fünfeck mit der Seitenlänge 5 cm. Ich zeichne zuerst die Grundfläche z.B. mit Hilfe eines Zirkels ein. Ich weiß, dass die Mantelfläche aus fünf Rechtecken besteht, eines kann ich schonmal hier an diese Seite einzeichnen. Die Höhe des Prismas entspricht hier der Länge des Rechtecks, also 15 cm. Nun zeichne ich an dieses erste Rechteck noch vier weitere Rechtecke an, die alle dieselbe Breite und Länge besitzen.

Jetzt fehlt nur noch die Deckfläche. Ich zeichne das regelmäßige Fünfeck vom Anfang jetzt spiegelverkehrt an ein beliebiges Rechteck an und schon habe ich das Netz des fünfseitigen Prismas.

Aber Vorsicht! Nicht jedes Netz eines geraden Prismas kann man so zeichnen. Das werden wir bei unserem nächsten Beispiel sehen. Ich habe dir am Anfang schon einige Beispiele von geraden Prismen im Alltag gezeigt. Schau dir zum Beispiel noch mal das Dach dieses Hauses an. Trennst du es von dem Haus ab und stellst es so hin, kannst du erkennen, dass es sich hier um ein gerades, dreiseitiges Prisma handelt. Es ist 15 m hoch. Versuch’ jetzt mal, das Netz dieses Prismas zu zeichnen. Wie gehst du vor? Ich habe hier keinen Platz um das Dach in Metern zu zeichnen. Ich benutze daher einen Maßstab von 1:100, dass heißt 1 cm bei mir entsprechen 100 cm bzw. 1 Meter in der Wirklichkeit. Zuerst zeichnest du die Grundfläche so, als würdest du das Dach von vorne anschauen. Hier haben wir ein annähernd rechtwinkliges , aber gleichschenkliges Dreieck. Die Grundseite ist 5 m lang und die Schenkel sind 3,53 m lang. An meine Grundseite kann ich nun ein Rechteck mit der Höhe 15 m anzeichnen. Doch nun aufgepasst! Die Grundfläche ist hier nicht regelmäßig, dass heißt die Seiten der Seitenflächen sind verschieden lang. Willst du also die restlichen zwei Seitenflächen zeichnen, so musst du als Breite die Länge deiner Schenkel einzeichnen. Hier waren das 3,53 m.

Hmmm, was fehlt hier noch? Achja, die Deckfläche! Die zeichne ich spiegelverkehrt an das mittlere Rechteck.

Und schon ist das Netz unseres dreiseitigen Prismas fertig!

Du siehst, dass du hier sehr darauf aufpassen musst, wie lang die einzelnen Seiten deiner Grundfläche sind und wo du deine Grund- und Deckfläche platzierst. Entscheidend sind die gemeinsamen Seiten der einzelnen Flächen. Und? Hast du alles verstanden? Wenn ja, dann schau doch mal, ob du selbst das Netz eines geraden Prismas zeichnen kannst!

Du solltest dabei über die Begriffe Grundfläche, Deckfläche, Seitenfläche, Höhe und Oberfläche des Prismas Bescheid wissen. Und denk daran: Zeichnest du ein Netzt eines Prismas, so erstellst du im Grunde eine Bastelanleitung dafür! Ich wünsche dir viel Spaß und freue mich schon sehr auf’s nächste Mal mir dir! Tschüss!

1 Kommentar
  1. Sehr gut

    Von Stiegersmile, vor fast 5 Jahren

Videos im Thema

Netze von Prismen, Zylindern und Kegeln zeichnen und konstruieren (3 Videos)

zur Themenseite

Netze von geraden Prismen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Netze von geraden Prismen kannst du es wiederholen und üben.

  • Beschreibe, was ein gerades Prisma ist.

    Tipps

    Dies ist ein gerades Fünfeckprisma.

    Ein Dach ist ein schönes Beispiel für ein gerades Prisma mit dreieckiger Grundfläche.

    Kongruent bedeutet deckungsgleich.

    Wenn zwei geometrische Formen kongruent zueinander sind, so sind diese auch ähnlich.

    Umgekehrt stimmt dies nicht.

    Lösung

    Was ist ein gerades Prisma?

    Ein Prisma hat eine Grund- und eine Deckfläche, die zueinander kongruent, also deckungsgleich sind.

    Eine solche Grundfläche kann ein Sechseck oder ein Rechteck oder ein Dreieck sein.

    Ein Prisma ist ein Körper, der durch Verschiebung eines Vielecks im Raum entsteht.

    Bei einem geraden Prisma wird dieses Vieleck senkrecht zur Fläche, in welcher die Grundfläche sich befindet, verschoben.

    Dabei entstehen als Seitenflächen Rechtecke.

    Der Abstand zwischen der Grund- und Deckfläche heißt Höhe des Prismas.

    Die gesamte Fläche der Seiten wird als Mantelfläche bezeichnet.

    Addiert man zu der Mantelfläche die Grund- und Deckfläche, so erhält man die Oberfläche des Prismas.

  • Gib an, welche Figur aus dem Alltag einem Prisma entspricht.

    Tipps

    Ein Prisma ist ein Körper mit einer Grund- und Deckfläche, welche kongruent, also deckungsgleich zueinander, sind.

    Die Seitenflächen eines Prismas sind Rechtecke.

    Die Grund- und Deckfläche sind parallel zueinander.

    Hier siehst du einige Eistüten. Lass dich nicht von dem Eis ablenken.

    Ein Ball ist eine Kugel. Prüfe doch mal, ob eine Kugel die Voraussetzungen eines Prismas erfüllt.

    Lösung

    Gerade Prismen kann man im alltäglichen Leben sehen:

    • Kisten sind Prismen. Diese haben eine sehr spezielle Form; man nennt sie auch Quader.
    • Wenn ein Bleistift noch nicht angespitzt ist, also der, der ganz neu gekauft ist, ist auch ein Prisma.
    • Ein Dach ist ein Prisma. Man muss sich dann vorstellen, dass sowohl die Grund- als auch die Deckfläche parallel zum Boden verlaufen.
    Eine Eistüte ist ein Kegel und ein Ball ist eine Kugel. Beide erfüllen die Voraussetzungen eines Prismas nicht.

  • Stelle dar, wie ein Netz eines fünfseitigen Prismas erstellt werden kann.

    Tipps

    Du musst mit einer Fläche beginnen: Wie wär's mit der Grundfläche?

    Die Seitenflächen eines geraden Prismas sind Rechtecke.

    Das Netz eines Prismas ist eine Anleitung, wie man ein Prisma basteln kann.

    Lösung

    Was ist das Netz eines geraden Prismas?

    Dieses Netz ist sozusagen eine Anleitung, wie man ein Prisma basteln kann.

    Ein solches Netz entsteht, am Beispiel eines fünfseitigen Prismas, dadurch, dass man

    • zunächst die Grundfläche zeichnet,
    • die Mantelfläche besteht aus fünf Rechtecken,
    • eines davon kann an der einen Seite des Prismas angezeichnet werden, die Länge des Rechtecks ist gerade die Höhe des Prismas.
    • Nun können die übrigen vier Seiten an das erste Rechteck gezeichnet werden.
    • Zuletzt wird die Deckfläche auf der gegenüberliegenden Seite der Grundfläche gespiegelt angezeichnet.
    Fertig ist das Netz des fünfseitigen Prismas.

  • Prüfe, welches der Netze ein Netz eines Würfels ist.

    Tipps

    Nicht jede beliebige Anordnung der Seitenflächen führt zu einem Körpernetz.

    Übertrage das jeweilige Netz auf ein Blatt, schneide es aus und versuche, einen Würfel zu falten.

    Zwei der vier Anordnungen sind keine Würfelnetze.

    Lösung

    Ein Netz eines Würfels muss sechs Quadrate beinhalten.

    Allerdings ist nicht jede Anordnung von sechs Quadraten das Netz eines Würfels.

    Man kann ein Würfelnetz auch so erhalten, dass man einen Körper an Kanten aufschneidet, sodass ein ebenes Gebilde entsteht. Umgekehrt muss man aus einem Netz einen Körper falten können.

    Die Anordnung mit jeweils drei Quadraten in einer Spalte lässt sich sicher nicht zu einem Würfel falten.

    Bei den übrigen kann man das Netz übertragen, ausschneiden und versuchen, einen Würfel zu falten.

    Dies gelingt nicht bei der Anordnung der vier Quadrate in einer Reihe und den beiden übrigen Quadraten übereinander.

    Alle übrigen Netze sind Würfelnetze.

  • Entscheide, ob ein Prisma vorliegt.

    Tipps

    Alle Seitenflächen eines Prismas sind Rechtecke.

    Grund- und Deckfläche eines Prismas sind kongruent und parallel zueinander.

    Die Grundfläche eines Prismas ist ein beliebiges Vieleck.

    Es kann auch ein Kreis sein. Ein solches Prisma nennt man auch Zylinder.

    Ein Prisma muss nicht unbedingt auf der Grundfläche stehen.

    Lösung

    Woran kann man ein Prisma erkennen?

    • Ein Prisma hat eine Grund- und eine Deckfläche.
    • Diese beiden Flächen sind kongruent und parallel zueinander.
    • Alle Seitenflächen sind Rechtecke.
    In der oberen Reihe sind
    • links ein sechseckiges Prisma, welches auf einer Seitenfläche steht,
    • in der Mitte ein Kegelstumpf, dies ist kein Prisma

    zu sehen.

    In der unteren Reihe befinden sich

    • links ein Quader, dies ist ein Prisma mit rechteckiger Grundfläche,
    • in der Mitte eine Pyramide, dies ist kein Prisma, sowie
    • rechts eine Halbkugel, auch diese ist kein Prisma.

  • Ordne den Körpern das jeweilige Netz zu.

    Tipps

    Beachte, dass die Seitenflächen eines Prismas immer Rechtecke sind.

    Die Grund- und Deckfläche eines Prismas sind kongruent.

    Wenn du dir unsicher bist, versuche doch das Netz zu übertragen, schneide es aus und versuche, ein Prisma daraus zu falten.

    Bis auf ein Netz ist jedes der Netze ein Körpernetz.

    Lösung

    Wie kann man erkennen, ob ein vorgegebenes Netz tatsächlich zu einem gegebenen Prisma gehört?

    • Eine Fläche muss zweimal vorkommen: die Grund- und Deckfläche. Diese müssen kongruent sein.
    • Die Seitenflächen sind Rechtecke.
    • Es gibt ebenso viele Seitenflächen wie die Anzahl der Ecken der Grundfläche.
    • Eine Ausnahme ist dabei der Zylinder. Dieser hat nur eine Seitenfläche. Aber auch diese ist ein Rechteck.
    Das Prismanetz zu dem dreieckigen Prisma ist das blaue Netz. Dieses ist zu erkennen an den beiden kongruenten Dreiecken sowie den drei Rechtecken.

    Das Prismanetz des Würfels, ein Prisma mit quadratischer Grundfläche und ebensolchen Seitenflächen, ist das rote mit den sechs Quadraten.

    Das Prismanetz des sechseckigen Prismas ist das rote mit den beiden sechseckigen Flächen und den sechs Rechtecken. Diese müssen nicht nebeneinander angeordnet sein.

    Das Netz des Zylinders ist das violette. Dieses ist erkennbar an den beiden Kreisen und dem Rechteck.

    Das gelbe Netz ist kein Körpernetz, da die beiden Kreise nicht kongruent sind.

    Das rote Netz mit der sechseckigen Grundfläche und den dreieckigen Seitenflächen gehört zu einer Pyramide mit sechseckiger Grundfläche.