Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Logarithmen- und Exponentialgleichungen

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.8 / 18 Bewertungen
Die Autor*innen
Avatar
Aline Mittag
Logarithmen- und Exponentialgleichungen
lernst du in der 9. Klasse - 10. Klasse - 11. Klasse

Logarithmen- und Exponentialgleichungen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Logarithmen- und Exponentialgleichungen kannst du es wiederholen und üben.
  • Ergänze die Erklärung zu Exponentialgleichungen.

    Tipps

    Hier siehst du eine Potenz.

    • Die Variable $a$, welche in der Potenz unten steht, wird als Basis bezeichnet.
    • Die Variable $n$, welche in der Potenz oben steht, wird als Exponent bezeichnet.

    Dies ist eine Potenzgleichung. Die Variable steht hier in der Basis.

    Lösung

    Was sind eigentlich Exponentialgleichungen?

    Als Exponentialgleichungen werden Gleichungen bezeichnet, bei denen die Variable $x$ im Exponenten steht.

    $f(x)=a^x+b$

    Diese Gleichung wird als Exponentialgleichung zur Basis $a$ bezeichnet.

    Besondere Exponentialgleichungen sind solche

    • mit der Basis $10$, also $g(x)=10^x+b$, oder
    • mit der Basis $e\approx2,718$, der Euler'schen Zahl, also $h(x)=e^x+b$.
    Exponentialgleichungen werden mit dem Logarithmus gelöst.

  • Bestimme die Lösung der Exponentialgleichung.

    Tipps

    Denke daran: Exponentialgleichungen werden mit dem Logarithmus gelöst.

    Verwende das 3. Logarithmusgesetz:

    $\lg(a^n)=n\cdot\lg(a)$.

    Hier siehst du ein Beispiel.

    Lösung

    Um diese Gleichung zu lösen, wird zunächst die $8$ subtrahiert:

    $\begin{array}{rclll} 10&=&5^x+8&|&-8\\ 2&=&5^x \end{array}$

    Nun kommt man mit den Grundrechenarten nicht mehr weiter. Es muss der Logarithmus angewendet werden:

    $\lg(2)=\lg(5^x)$.

    Mit Hilfe des dritten Logarithmusgesetzes $\lg(a^n)=n\cdot\lg(a)$ kann weiter umgeformt werden zu

    $\lg(2)=x\cdot \lg(5)$.

    Zuletzt muss noch durch $\lg(5)$ dividiert werden:

    $x=\frac{\lg(2)}{\lg(5)}\approx0,43$.

  • Ermittle die Zeit, nach der das Kapital sich vervierfacht hat.

    Tipps

    Verwende die Zinsformel

    $K_E=K_A\cdot\left(\frac{p}{100}\right)^n$.

    Dabei sind

    • $K_E$ das Endkapital,
    • $K_A$ das Anfangskapital,
    • $p$ der Zinssatz und
    • $n$ die Zahl der Jahre.

    Beachte: Es ist nach der Zahl der Jahre gefragt. Du musst also eine Exponentialgleichung lösen.

    Exponentialgleichungen werden mit dem Logarithmus gelöst.

    Das dritte Logarithmusgesetz besagt

    $\lg(a^n)=n\cdot\lg(a)$.

    Lösung

    Camilla muss diese Gleichung lösen:

    $4000 € = 1000 € \cdot1,025^n$.

    1. Sie dividiert durch $1000€$ und erhält $4=1,025^n$.
    2. Nun logarithmiert sie $\lg(4)=\lg(1,025^n)$.
    3. Der Exponent kann aus dem Logarithmus herausgezogen werden: $\lg(4)=n\cdot\lg(1,025)$.
    4. Zuletzt dividiert sie durch $\lg(1,025)$. Dies führt zu $n=\frac{\lg(4)}{\lg(1,025)}\approx 56,1$.
    Das ist ganz schön lange: Camilla muss mehr als 56 Jahre warten, bis ihr Kapital sich vervierfacht hat.

  • Leite die Lösungen der Exponentialgleichungen her.

    Tipps

    Forme jede der Gleichungen so weit um, dass du zu der Gleichung

    $a^x=e$

    gelangst.

    Nun kannst du logarithmieren.

    Du könntest auch jeweils die Probe machen.

    Lösung

    Jede der folgenden Gleichungen kann zunächst so weit umgeformt werden, dass noch die Gleichung $3^x=???$ zu lösen ist.

    $\mathbf{3^x-3=6}$

    $\begin{array}{rclll} 3^x-3&=&6&|&+3\\ 3^x&=&9&|&\lg(~~~)\\ x\cdot\lg(3)&=&\lg(9)&|&:\lg(3)\\ x&=&\frac{\lg(9)}{\lg(3)}\\ &=&2 \end{array}$

    $\mathbf{3^x+3=6}$

    $\begin{array}{rclll} 3^x-3&=&6&|&-3\\ 3^x&=&3&|&\lg(~~~)\\ x\cdot\lg(3)&=&\lg(3)&|&:\lg(3)\\ x&=&\frac{\lg(3)}{\lg(3)}\\ &=&1 \end{array}$

    $\mathbf{4\cdot 3^x=15}$

    $\begin{array}{rclll} 4\cdot 3^x&=&15&|&:4\\ 3^x&=&3,75&|&\lg(~~~)\\ x\cdot\lg(3)&=&\lg(3,75)&|&:\lg(3)\\ x&=&\frac{\lg(3,75)}{\lg(3)}\\ &\approx&1,2 \end{array}$

    $\mathbf{2\cdot 3^x-3=12}$

    $\begin{array}{rclll} 2\cdot 3^x-3&=&12&|&+3\\ 2\cdot 3^x&=&15&|&:2\\ 3^x&=&7,5&|&\lg(~~~)\\ x\cdot\lg(3)&=&\lg(7,5)&|&:\lg(3)\\ x&=&\frac{\lg(7,5)}{\lg(3)}\\ &\approx&1,8 \end{array}$

  • Berechne das Kapital nach 18 Jahren.

    Tipps

    Setze die bekannten Größen in der Formel ein.

    Beachte, dass in der Zinzsformel

    $1+\frac{p}{100}$

    steht.

    Lösung

    Das Kapital zum Anfang $K_A=1000~€$, die Zahl der Jahre $n=18$ und $p=4$ werden in dieser Formel eingesetzt. Damit gilt

    $\begin{array}{rcl} K_E&=&1000~€\cdot\left(1+\frac4{100}\right)^{18}\\ &=&1000~€\cdot1,04^{18}\\ &\approx& 2025,82~€ \end{array}$.

  • Gib eine allgemeine Lösungsformel für eine Exponentialgleichung an.

    Tipps

    Subtrahiere zunächst $b$.

    Logarithmiere auf beiden Seiten: $\lg(c_b)=\lg(a^x)$.

    Wende das dritte Logarithmusgesetz an:

    $\lg(a^n)=n\cdot \lg(a)$.

    Lösung

    Subtraktion von $b$ führt zu $c-b=a^x$.

    Nun wird auf beiden Seiten logarithmiert:

    $\lg(c-b)=\lg(a^x)$.

    Hier kann man auch sehen, warum sowohl $a>0$ als auch $c-b>0$, also $c>b$, sein müssen. Der Logarithmus ist nur für positive Argumente definiert.

    Damit ist

    $\lg(c-b)=x\cdot \lg(a)$.

    Zuletzt wird durch $\lg(a)$ dividiert und man erhält die allgemeine Lösung

    $x=\frac{\lg(c-b)}{\lg(a)}$.

    Man kann sich dies so merken: Die Basis steht auch im Bruch unten.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

7.919

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.907

Lernvideos

36.936

Übungen

34.195

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden