30 Tage kostenlos testen: Mehr Spaß am Lernen.
30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

30 Tage kostenlos testen

Kreiszahl Pi – Näherungsverfahren von Archimedes 07:32 min

Textversion des Videos

Transkript Kreiszahl Pi – Näherungsverfahren von Archimedes

Hallo! Mein Name ist Thekla und heute möchte ich dir die Zahl “Pi” einmal genauer vorstellen! Dazu wiederholen wir zuerst, was du über “Pi” schon weißt und wofür du diese Zahl brauchst.

“Pi” ist schon seit der Antike vor über 2000 Jahren bekannt. Doch woher wussten die Menschen damals ohne Computer, wie diese Zahl aussieht? Dazu schauen wir uns heute zusammen das Näherungsverfahren von Archimedes an. “Pi” wird in der Mathematik “Kreiszahl” genannt, da sie sich aus dem Verhältnis zwischen Umfang und Durchmesser eines Kreises berechnen lässt. Das heißt Pi gleich Umfang durch Durchmesser gleich zwei mal Pi mal r durch 2 r. Nach Kürzen von 2 r erhalten wir wieder Pi.

Wir benötigen “Pi” zur Berechnung verschiedener Kreisgrößen, zum Beispiel Umfang und Fläche.

Die Zahl “Pi” gehört zu den irrationalen Zahlen. Das bedeutet, das sie eine reelle Zahl ist, die man nicht als Bruch darstellen kann. Sie hat unendlich viele Nachkommazahlen. Bis jetzt konnte man “Pi” mithilfe von Computern auf 5 Billionen Nachkommstellen berechnen.(Dann schreibe ich das Board mit den ganzen Zahlen voll.)
Es reicht aber, wenn wir uns die ersten drei Ziffern dieser spannenden Zahl merken: 3,14 Doch wie wurde “Pi” früher berechnet? Um das zu beantworten, stelle ich dir heute den griechischen Mathematiker Archimedes von Syrakus vor. Er lebte im 3. Jahrhundert vor Christus und von ihm soll der noch heute gebräuchliche Ausdruck “Heureka!” stammen, was übersetzt “Ich habe es gefunden” bedeutet. Archimedes entwickelte eine Methode, sich der Zahl Pi über einen Einheitskreis anzunähern, also einen Kreis mit dem Radius 1. Nun wissen wir von eben, dass Pi sich mit der Formel Umfang geteilt durch Durchmesser, also U durch d, berechnen lässt. In unserem Fall kennen wir d, da der Einheitskreis den Durchmesser 2 hat. Archimedes zeichnete nun außerhalb und innerhalb des Kreises jeweils ein regelmäßiges 6-Eck. Ich mache es dir einmal vor. Du kannst erkennen, dass der Umfang des äußeren 6-Ecks größer als der des Kreises ist. Und der Umfang des inneren 6-Ecks ist kleiner als der Umfang des Kreises. Die Seitenlänge dieses 6-Ecks beträgt 1. Archimedes teilte nun die Seiten der beiden 6-Ecke und zeichnete ein 12-Eck, dann ein 24-Eck usw. So näherte er sich Stück für Stück dem Umfang des Einheitskreises und somit der Zahl Pi an. Schauen wir uns nun einmal einen Abschnitt innerer Vielecke genauer an. Dieser Teil ist eine halbe Seite von einem n-Eck (mit dem Finger auf den Abschnitt zeigen), dieser gehört zu einem Vieleck mit doppelt so vielen Ecken, also einem 2-mal-n-Eck.

Diese halbe Seite des n-Ecks nennen wir sn2, diese Seite des 2-mal-n-Ecks nennen wir s2n. Für unseren geometrischen Beweis ist außerdem diese Seite wichtig (mit dem Finger auf den Abschnitt zeigen), die wir c nennen. Anhand dieser Zeichnung und mithilfe des Satzes des Pythagoras können wir nun zwei Gleichungen aufstellen. Wenn wir das nun für c in die erste Gleichung einsetzen, ergibt sich diese Gleichung. (zeigen)

Wenn wir nun ausmultiplizieren und zusammenfassen, erhalten wir erst und dann nimmt man die 2 mit unter die Wurzel, kann man das noch zusammenfassen.

Nun ziehen wir noch die Wurzel. Ähnlich kann man auch die Seitenlänge der äußeren n-Ecke bestimmen.

Je größer wir n wählen, desto mehr nähert sich die Länge der n-Ecke von beiden Seiten der Länge des Kreisauschnittes an. So können wir den Wert für den Umfang des Einheitskreises näherungsweise bestimmen und damit auch Pi.

Da die Seitenlänge des anfänglichen 6-Ecks 1 betrug, können wir nun die Seitenlängen des 12-Ecks, 24-Ecks usw. berechnen. Da das ziemlich aufwenig wird, nimmt man dafür meistens Tabellenkalkulationen. Ich habe dir hier einmal die Werte bis zu einem 96-Eck aufgelistet. Du siehst: Je größer die Anzahl der Ecken wird, desto näher kommen wir der Zahl Pi.

Wie du siehst, braucht man keinen Computer, um die Zahl Pi auf einige Stellen nach dem Komma zu berechnen. Lass uns nun alles, was du heute gelernt hast zusammenfassen.

Die Zahl Pi ist irrational, das heißt: sie hat unendlich viele Nachkommazahlen. Sie wird in der Mathematik Kreiszahl genannt und lässt sich aus der Formel berechnen. Als erster hat der griechische Mathematiker Archimedes ein Näherungsverfahren für Pi entwickelt. Heute kennen wir bereits knapp 5 Billionen Nachkommazahlen von Pi! Damit kann man ganze Bücher seitenweise beschreiben. Pi ist eine erstaunliche Zahl! Und mir hat es heute sehr viel Spaß gemacht, dir Pi ein wenig näher zu bringen! Also bis zum nächsten Mal! Tschüss!

3 Kommentare
  1. 0285ml baerchenglas

    u : d ist doch richtig oder weil 2*r ja eig. der durchmesser ist

    Von Christopher S., vor mehr als 2 Jahren
  2. Default

    ok danke war toll

    Von Roman Ionkin, vor mehr als 2 Jahren
  3. Default

    Danke, dieses Video war sehr hilfreich!

    Von Murat, vor fast 3 Jahren