Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Gleichungsumformungen in Exponential- und Logarithmusgleichungen

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.5 / 11 Bewertungen
Die Autor*innen
Avatar
Team Digital
Gleichungsumformungen in Exponential- und Logarithmusgleichungen
lernst du in der 9. Klasse - 10. Klasse - 11. Klasse - 12. Klasse - 13. Klasse

Gleichungsumformungen in Exponential- und Logarithmusgleichungen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Gleichungsumformungen in Exponential- und Logarithmusgleichungen kannst du es wiederholen und üben.
  • Gib die Eigenschaften von Exponentialausdrücken und dem Logarithmus an.

    Tipps

    Kann die mehrfache Multiplikation der Zahl $2$ mit sich selbst ein negatives Produkt liefern?

    Lösung

    Exponentialausdruck: $~2^x=a$

    Um einen Exponentialausdruck aufzulösen, musst du den Logarithmus zur selben Basis anwenden. Der Definitionsbereich von Exponentialausdrücken weist keine Beschränkungen auf, es gibt hier also $x\in\mathbb{R}$. Ein Exponentialausdruck ergibt immer positive Zahlen, es gilt daher $a\in\mathbb{R}^+$.

    Logarithmus: $~\log_2(x)=a$

    Um einen Logarithmus aufzulösen, setzt man beide Seiten in den Exponenten derjenigen Zahl, die der Logarithmusbasis entspricht. Es können nur positive Zahlen logarithmiert werden, es gilt also $x\in\mathbb{R}^+$. Beim Logarithmieren können beliebige reelle Zahlen herauskommen, es gilt $a\in\mathbb{R}$.

  • Bestimme die Lösungen der Gleichungen.

    Tipps

    Nutze folgendes Potenzgesetz:

    $a^{x+y}=a^x \cdot a^y$

    Die eulersche Zahl $e$, die häufig in Exponentialgleichungen auftaucht, ist eine irrationale Zahl. Sie hat also einen konkreten Zahlenwert, mit dem wir ganz normal rechnen können.

    Lösung

    Beispiel 1: $~e^{2+x}=a^3$

    Die eulersche Zahl $e$, die häufig in Exponentialgleichungen auftaucht, ist eine irrationale Zahl. Sie hat also einen konkreten Zahlenwert und wir können ganz normal mit ihr rechnen.

    Exponentialausdrücke haben keine Einschränkungen im Definitionsbereich, sodass wir für $x$ jede beliebige reelle Zahl einsetzen können. Es gilt daher:

    $x\in\mathbb{R}$

    Sie ergeben aber immer nur positive Ausdrücke. Für den Parameter $a$ gilt daher:

    $a\in\mathbb{R}^+$

    Die Summe im Exponenten können wir mithilfe des folgenden Potenzgesetzes vereinfachen:

    $a^{x+y}=a^x \cdot a^y$

    Damit folgt:

    $\begin{array}{llll} e^2\cdot e^x &=& a^3 & \vert :e^2 \\ \\ e^x &=& \frac{a^3}{e^2} & \end{array}$

    Die verbleibende Gleichung können wir nach $x$ auflösen, indem wir den Logarithmus zur Basis $e$ anwenden. Den schreibt man als $\ln$.

    $\begin{array}{llll} \ln{(e^x)} &=& \ln{\left(\frac{a^3}{e^2}\right)} & \\ \\ x &=& \ln{\left(\frac{a^3}{e^2}\right)} & \end{array}$

    Das Ergebnis sieht recht kompliziert aus, ist aber einfach nur eine Zahl, die von dem Wert $a>0$ abhängt.

    Beispiel 2: $~\log_2(x^5)=a$

    In diesem Beispiel taucht die Variable im Logarithmus auf. Der Logarithmus ist für Zahlen größer null definiert. $x$ muss also größer null sein:

    $x\in$ {$\mathbb{R}^+$}

    Beim Logarithmieren kann jede reelle Zahl herauskommen. Den Parameter $a$ müssen wir also nicht einschränken. Es gilt:

    $a\in$ {$\mathbb{R}$}

    Die Basis des Logarithmus ist hier $2$. Also setzen wir zum Umformen beide Seiten jeweils in den Exponenten von $2$. So lösen wir den Logarithmus auf. Dann müssen wir nur noch die fünfte Wurzel ziehen und erhalten folgende Lösung:

    $\begin{array}{llll} 2^{\log_2(x^5)} &=& 2^a & \\ \\ x^5 &=& 2^a & \vert \sqrt[5]{~~} \\ \\ x &=& \sqrt[5]{2^a} & \end{array}$

    Weil $2^a$ immer positiv ist, erhalten wir für jedes $a$ positive Lösungen. Die Lösungen sind also in jedem Fall im Definitionsbereich enthalten.

  • Erschließe die jeweilige Umkehroperation.

    Tipps

    Die Umkehroperation einer Exponentialgleichung ist der Logarithmus zur entsprechenden Basis.

    Ist $a$ die Basis eines Logarithmus, so ist die Umkehroperation $a^{(~~)}$.

    Lösung

    Um einen Exponentialausdruck aufzulösen, muss man den Logarithmus zur selben Basis anwenden. Um einen Logarithmus aufzulösen, setzt man beide Seiten in den Exponenten derjenigen Zahl, die der Logarithmusbasis entspricht.

    Damit erhalten wir die folgenden Zuordnungen:

    $\begin{array}{r|r} \text{Gleichung} & \text{Umkehroperation} \\ \hline \\ e^x=1 & \ln{(~~)} \\ \\ \ln{(x)}=1 & e^{(~~)} \\ \\ \log_{10}{(x)}=1& 10^{(~~)} \\ \\ 10^x=1 & \log_{10}{(~~)} \end{array}$

  • Ermittle die Lösung der Gleichung.

    Tipps

    Es gilt:

    $3e^{x+1}-2e^{x+1}=e^{x+1}$

    Hier gibt es zwei besondere Punkte für den Logarithmus zur Basis $e$:

    $\ln{(1)}=0$

    $\ln{(e)}=1$

    Lösung

    Wir betrachten die Gleichung: $~5e^{2x+1}+3 = 4e^{2x+1}+4$

    Zunächst bringen wir gleichartige Terme auf je eine Seite der Gleichung:

    $\begin{array}{llll} 5e^{2x+1}+3 &=& 4e^{2x+1}+4 & \vert -4e^{2x+1} \\ \\ e^{2x+1}+3 &=& 4 & \vert -3 \\ \\ e^{2x+1} &=& 1 &  \end{array}$

    Jetzt können wir mittels der Umkehroperation $\ln{(~~)}$ die Gleichung weiter vereinfachen:

    $\begin{array}{llll} e^{2x+1} &=& 1 & \vert \ln{(~~)} \\ \\ 2x+1 &=& \ln{(1)} & \\ \\ 2x+1 &=& 0 & \end{array}$

    Nun haben wir nur noch eine lineare Gleichung, die wir einfach nach $x$ umstellen können:

    $\begin{array}{llll} 2x+1 &=& 0 & \vert -1 \\ \\ 2x &=& -1 & \vert :2 \\ \\ x &=& -\dfrac 12 & \end{array}$

  • Bestimme die Lösung der Gleichung $2^x=8$.

    Tipps

    In Exponentialgleichungen taucht die Variable im Exponenten auf. Die Umkehroperation solcher Gleichungen ist der Logarithmus zur entsprechenden Basis.

    Es gilt:

    $2^n=\underbrace{2\cdot 2\cdot ... \cdot 2}_{n\text{-mal}}$

    Wie oft multiplizierst du den Faktor $2$, um das Produkt $8$ zu erhalten?

    Lösung

    In einer Exponentialgleichung taucht die Variable im Exponenten auf. In unserem Beispiel haben wir die Basis $2$ und den Exponenten $x$:

    $\qquad 2^x=8$

    Die Umkehroperation solcher Gleichungen ist der Logarithmus zur entsprechenden Basis. Hier also zur Basis $2$.

    $\qquad \log_2{2^x}=\log_2{8}$

    Wir können nun den Exponentialausdruck mithilfe des Logarithmus auflösen und erhalten:

    $\qquad x=\log_2{8}$

    Auf der rechten Seite steht nur eine Zahl. Den Logarithmus kannst du mit dem Taschenrechner ausrechnen.

    In diesem Fall kann man die Lösung aber auch ohne Taschenrechner ermitteln. Wir überlegen hierzu: $2$ hoch was ergibt $8$?

    Die Lösung ist $3$, denn es gilt:

    $\qquad 2^3=2\cdot 2\cdot 2 = 8$

    Das Ergebnis beträgt:

    $\qquad x=3$

  • Erschließe die Lösung der Gleichung.

    Tipps

    Bringe zuerst gleichartige Terme auf je eine Seite der Gleichung.

    Wenn alle gleichartigen Terme zusammengefasst wurden, solltest du die Gleichung durch den Vorfaktor von $\ln{(2x+2)}$ teilen.

    Lösung

    Wir lösen im Folgenden die Gleichung: $~6\ln{(2x+3)}-2=2\ln{(2x+3)}+2$

    Wir bringen zunächst gleichartige Terme auf je eine Seite der Gleichung und fassen sie zusammen:

    $\begin{array}{llll} 6\ln{(2x+3)}-2 &=& 2\ln{(2x+3)}+2 & \vert +2 \\ \\ 6\ln{(2x+3)} &=& 2\ln{(2x+3)}+4 & \vert -2\ln{(2x+3)} \\ \\ 4\ln{(2x+3)} &=& 4 & \end{array}$

    Nun teilen wir die Gleichung durch $4$ und wenden dann die Umkehroperation $e^{(~~)}$ an. Dann stellen wir noch nach $x$ um:

    $\begin{array}{llll} \ln{(2x+3)} &=& 1 & \vert e^{(~~)} \\ \\ 2x+3 &=& e^1 & \vert -3 \\ \\ 2x &=& e-3 & \vert :2 \\ \\ x &=& \dfrac{e-3}{2} & \end{array}$

    Der Taschenrechner liefert uns eine Zahl, die auf die zweite Nachkommastelle gerundet $-0,14$ ergibt.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.090

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.922

Lernvideos

36.998

Übungen

34.261

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden