30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Gleichungsumformungen in Exponential- und Logarithmusgleichungen

Bewertung

Sei der Erste und gib eine Bewertung ab!

Die Autor/-innen
Avatar
Team Digital
Gleichungsumformungen in Exponential- und Logarithmusgleichungen
lernst du in der 9. Klasse - 10. Klasse - 11. Klasse - 12. Klasse - 13. Klasse

Beschreibung Gleichungsumformungen in Exponential- und Logarithmusgleichungen

Nach dem Schauen dieses Videos wirst du in der Lage sein, Lösungen von Exponential- und Logarithmusgleichungen zu finden.

Zunächst lernst du, was eine Exponentialgleichung ist und wie du diese lösen kannst. Anschließend siehst du, wie dir Potenzgesetze dabei helfen können, Exponentialgleichungen zu vereinfachen. Abschließend lernst du, wie du Logarithmusgleichungen lösen kannst.

Lerne etwas über Gleichungsumformungen in Exponential- und Logarithmusgleichungen.

Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Potenzen, Exponenten, Logarithmen, Exponentialgleichungen, Lograithmusgleichungen und Gleichungsumformungen.

Bevor du dieses Video schaust, solltest du bereits wissen, was Potenzen, Exponenten und Logarithmen sind.

Transkript Gleichungsumformungen in Exponential- und Logarithmusgleichungen

Immer wieder Gleichungen! Und dann auch noch welche, bei denen die Variable im Exponenten oder im Logarithmus vorkommt? Zum Glück bist du jetzt auf DAS ultimative Video zu Gleichungsumformungen in Exponential- und Logarithmusgleichungen gestoßen. Um den Inhalten dieses Videos folgen zu können, solltest Du bereits wissen, wie man Gleichungen mit Hilfe der Grundrechenarten umformen kann, was Potenzen, Exponenten und Logarithmen sind und wie man mit ihnen rechnet. Schauen wir uns zunächst die Exponentialgleichungen an. In diesen Gleichungen taucht die Variable im EXPONENTEN auf. Nun gibt es aber für solche Fälle keine x-te Wurzel oder so etwas. Nein, die Umkehroperation solcher Gleichungen ist der LOGARITHMUS zur entsprechenden BASIS. Hier also zur Basis 2. Das, was auf der RECHTEN Seite steht, ist bloß eine ZAHL, auch wenn es im ersten Moment nicht so aussieht. Den Logarithmus kannst du mit dem Taschenrechner ausrechnen. In diesem speziellen Fall kann man die Lösung aber auch ohne Taschenrechner ermitteln. Das ist aber eher die Ausnahme. Rechnen wir mal: 2 hoch was ergibt 8? Die Lösung ist 3. Denn '2 hoch 3' ist '2 mal 2 mal 2'. Und das ist 8. Das Ganze geht natürlich auch in kompliziert und mit Parameter. Das e ist die Eulersche Zahl, die häufig in Exponentialgleichungen auftaucht. Und auch, wenn sie irrational ist, hat sie doch einen ganz konkreten Zahlenwert und wir können ganz normal mit ihr rechnen. Exponentialausdrücke haben normalerweise keine Einschränkungen im Definitionsbereich. Für x können wir also beliebige reelle Zahlen einsetzen. Sie ergeben aber IMMER positive Ausdrücke. Auf der rechten Seite muss also ein Wert größer Null auftauchen. a muss hier also größer als Null sein. DIESE Summe im Exponenten sieht erst einmal schwierig aus. So etwas kann man aber oft mit Hilfe von Potenzgesetzen, wie DIESEM, vereinfachen. Hier kann man den Ausdruck in e Quadrat mal e hoch x umformen. e Quadrat ist einfach eine Zahl... durch die wir teilen können. Die verbleibende Gleichung können wir nach x auflösen, indem wir den Logarithmus zur Basis e anwenden. Den schreibt man auch SO und so findest du ihn auch auf Taschenrechnern. Das Ergebnis sieht schrecklich aus, ist aber letztlich einfach nur eine Zahl, je nachdem, welcher Wert für a gegeben ist. Aber hier gilt: Diese Lösung existiert nur für a größer Null. Zum Schluss noch ein kurzer Blick auf die Logarithmusgleichungen. In denen taucht die Variable im LOGARITHMUS auf. In den Logarithmus darf man aber NICHT BELIEBIGE Zahlen einsetzen, denn für Zahlen kleiner gleich Null ist er NICHT definiert. x muss also größer Null sein. Dafür kann beim Logarithmieren JEDE reelle Zahl herauskommen. Den Parameter a müssen wir also NICHT einschränken. Die BASIS des Logarithmus ist hier 2. Also setzen wir zum Umformen beide Seiten jeweils in den Exponenten von 2. So lösen wir den Logarithmus auf. Dann müssen wir nur noch die fünfte Wurzel ziehen und erhalten die Lösung. Weil 2 hoch a IMMER positiv ist, erhalten wir für JEDES a positive Lösungen. Die Lösungen sind also in jedem Fall im Definitionsbereich enthalten. Fassen wir das nochmal zusammen: Um einen Exponentialausdruck aufzulösen, musst du den Logarithmus zur SELBEN Basis anwenden. Um einen Logarithmus aufzulösen, setzt man beide Seiten in den Exponenten derjenigen Zahl, die der Logarithmusbasis entspricht. Während der Definitionsbereich von Exponentialausdrücken normalerweise KEINE Beschränkungen aufweist, können NUR POSITIVE Zahlen logarithmiert werden. Während aber beim Logarithmieren BELIEBIGE REELLE Zahlen herauskommen können, ergibt ein Exponentialausdruck STETS POSITIVE Zahlen. Manchmal kannst du Potenz- oder Logarithmengesetze anwenden, um die Ausdrücke zu vereinfachen. Puuuh! Das wars fürs Erste… fürs Erste!

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

10.819

Lernvideos

44.238

Übungen

38.890

Arbeitsblätter

24h

Hilfe von Lehrer/
-innen

running yeti

Inhalte für alle Fächer und Klassenstufen.

Von Expert/-innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden