Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Flächen zwischen Funktionsgraphen

Alle Inhalte sind von Lehrkräften & Lernexperten erstellt
Alle Inhalte sind von Lehrkräften & Lernexperten erstellt
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.7 / 3 Bewertungen
Die Autor*innen
Avatar
Frank Steiger
Flächen zwischen Funktionsgraphen
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Flächen zwischen Funktionsgraphen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Flächen zwischen Funktionsgraphen kannst du es wiederholen und üben.
  • Berechne den Inhalt der Fläche, welche von den beiden Funktion $f(x)$ und $g(x)$ eingeschlossen wird.

    Tipps

    Um zwei Funktionen auf Schnittpunkte zu untersuchen, müssen die Funktionsgleichungen gleichgesetzt werden.

    Beim Aufstellen der Differenzfunktion ist es egal, ob $f(x)$ von $g(x)$ oder umgekehrt abgezogen wird. Du musst dann die gesamte Rechnung mit Beträgen durchführen.

    Zur Berechnung des bestimmten Integrals der Differenzfunktion musst du eine Stammfunktion der Differenzfunktion bestimmen.

    Die Potenzregel der Integration lautet:

    $\int (x^n)dx=\frac1{n+1}x^{n+1},~n\neq-1$.

    Der Hauptsatz der Differential- und Integralrechnung ist gegeben durch:

    $\int_{a}^{b}f(x)dx=[F(x)]_a^b=F(b)-F(a)$

    mit $F'(x)=f(x)$.

    Lösung

    • Berechnung der Schnittpunkte:
    $\begin{align*} &&f(x)& =g(x) \\ &\Leftrightarrow&-x^2+4&=x^2-4x+4&|&+x^2-4\\ &\Leftrightarrow&0&=2x^2-4x\\ &\Leftrightarrow&0&=2x(x-2)\\ &\Rightarrow&x_1&=0\\ &&x_2&=2. \end{align*}$

    Die Integrationsgrenzen sind also $0$ und $2$.

    • Aufstellen der Differenzfunktion. Da der Graph der Funktion zu $f(x)$ oberhalb dem zu $g(x)$ liegt, wird die Differenzfunktion wie folgt gebildet:
    $d(x)=f(x)-g(x)=-x^2+4-(x^2-4x+4)=-2x^2+4x$

    • Berechnung des bestimmten Integrals der Differenzfunktion:
    $\begin{align*} \int_{0}^{2}(-2x^2+4x)dx&=\left[-\frac23x^3+2x^2\right]_0^2\\ &=\left(-\frac23\cdot2^3+2\cdot2^2\right)-\left(-\frac23\cdot0^3+2\cdot0^2\right)\\ &=\frac{8}3=2,\bar6~[\text{FE}]. \end{align*}$

    Hier wurde der Hauptsatz der Differential- und Integralrechnung angewendet: $\int_{0}^{2}d(x)dx=[D(x)]_0^2=D(2)-D(0)$ mit $D'(x)=d(x)$.

    Die Stammfunktion wird berechnet mit

    • der Potenzregel der Integration: $\int (x^n)dx=\frac1{n+1}x^{n+1},~n\neq-1$,
    • der Faktorregel $\int (k\cdot f(x))dx=k\cdot F(x),~k\in\mathbb{R}$ sowie
    • der Summen-, beziehungsweise Differenzregel: $\int (f(x)±g(x))dx=F(x)±G(x)$.
    Dabei ist $F'(x)=f(x)$ und $G'(x)=g(x)$.

  • Gib den Flächeninhalt an, der von den drei Funktionen eingeschlossen wird.

    Tipps

    Es müssen gesamt drei Schnittstellenbestimmungen durchgeführt werden, wobei $x_1$ die signifikante Schnittstelle ganz links und $x_3$ die signifikante Schnittstelle ganz rechts ist:

    • $f(x)$ mit $h(x)$, diese liefert $x_1$ und eine weitere Schnittstelle bei $3,5$, welche für die Flächenberechnung nicht von Bedeutung ist,
    • $g(x)$ mit $h(x)$, diese liefert $x_2$ und
    • $f(x)$ mit $g(x)$, diese liefert $x_3$.

    Das Flächenstück muss aufgeteilt werden.

    Die Differenzfunktion zur Berechnung der linken Teilfläche ist $d_1(x)=-x^2+3,5x$, die der rechten ist $d_2(x)=-x^3+5x^2-10,5x+9$.

    Lösung

    Da dieses Flächenstück von drei Funktionen eingeschlossen wird, ist es sinnvoll zur Veranschaulichung die Graphen in ein Koordinatensystem zu zeichnen. Dabei ist zu erkennen, dass das gesuchte Flächenstück $A$ zerlegt werden kann in zwei Teilflächen $A_1$ und $A_2$.

    Das Flächenstück $A_1$ liegt zwischen den Funktionsgraphen von $f(x)$ und $h(x)$, $A_2$ zwischen denen zu $f(x)$ und $g(x)$.

    Man berechnet zunächst die Schnittstellen der Funktionen:

    • $f(x)=h(x)\Leftrightarrow -x^2+3,5x=0\Leftrightarrow x(-x+3,5)=$, also $x_1=0$, die weitere Nullstelle bei $3,5$ ist für die Flächenberechnung nicht von Bedeutung.
    • $g(x)=h(x) \Leftrightarrow x^3-6x^2+14x-9=0$. Eine Schnittstelle erhält man durch Raten $x_2=1$. Mittels Polynomdivision kann man nachweisen, dass keine weiteren Schnittstellen existieren.
    • $f(x)=g(x)\Leftrightarrow -x^3+5x^2-10,5x+9=0$. Eine Schnittstelle $x_3=2$ erhält man wieder durch Raten. Auch hier existieren keine weiteren Schnittstellen.
    • Somit ist $A_1$ zu berechnen mit der Differenzfunktion $d_1(x)=-x^2+3,5x$ in den Grenzen $0$ bis $1$:
    $\begin{align*} A_1&=\int_{0}^{1}(-x^2+3,5x)dx\\ &=\left[-\frac13x^3+\frac74x^2\right]_0^1\\ &=\left(-\frac13\cdot1^3+\frac74\cdot1^2\right)-\left(-\frac13\cdot0^3+\frac74\cdot0^2\right)\\ &=\frac{17}{12}~[\text{FE}]. \end{align*}$

    • $A_2$ wird berechnet mit der Differenzfunktion $d_2(x)=-x^3+5x^2-10,5x+9$ in den Grenzen $1$ bis $2$:
    $\begin{align*} A_2&=\int_{1}^{2}(-x^3+5x^2-10,5x+9)dx\\ &=\left[-\frac14x^4+\frac53x^3-\frac{21}4x^2+9x\right]_1^2\\ &=\left(-\frac14\cdot 2^4+\frac53\cdot2^3-\frac{21}4\cdot2^2+9\cdot2\right)-\left(-\frac14\cdot1^4+\frac53\cdot1^3-\frac{21}4\cdot1^2+9\cdot1\right)\\ &=\frac{14}{12}~[\text{FE}]. \end{align*}$

    Die gesuchte Fläche ist damit $A=A_1+A_2=\frac{31}{12}\approx 2,58$ [FE].

  • Berechne die Schnittpunkte der beiden Funktionen $f(x)=0,5x+1$ sowie $g(x)=x^3-2x^2-2,5x+1$.

    Tipps

    Zum Berechnen der Schnittstellen von Funktionen müssen die Funktionsgleichungen gleichgesetzt werden.

    Ist bei einer kubischen Gleichung kein Term ohne $x$ vorhanden, so kann $x$ ausgeklammert werden und die erste Lösung ist $x_1=0$.

    Die p-q-Formel zur Lösung von quadratischen Gleichungen der Form $x^2+px+q=0$ lautet:

    $\large{x_{1,2}=-\frac p2±\sqrt{\left(\frac p2\right)^2-q}}$.

    Lösung

    Zur Berechnung der Schnittstellen werden die beiden Funktionen gleichgesetzt: $f(x)=g(x)$. Daraus resultiert die Gleichung $0,5x+1=x^3-2x^2-2,5x+1$, welche wir im Folgenden umstellen wollen, um die Schnittstellen zu ermitteln:

    $\begin{align*} &\Leftrightarrow&0&=x^3-2x^2-3x\\ &\Leftrightarrow&0&=x(x^2-2x-3)\\ &\Rightarrow&x_1&=0\\ &\text{oder}&x^2-2x-3&=0. \end{align*}$

    Falls noch weitere Schnittstellen existieren, können diese mit der p-q-Formel ermittelt werden:

    $\begin{align*} x_{2,3}&=-\frac{-2}2±\sqrt{\left(\frac{-2}2\right)^2-(-3)}\\ x_2&=1+2=3\\ x_3&=1-2=-1. \end{align*}$

    Was es bedeutet, dass die beiden Funktionsgraphen drei Schnittstellen haben, kannst du an dem Bild erkennen.

  • Gib an, wie der Flächeninhalt, welcher von den beiden Funktionen $f(x)$ und $g(x)$ eingeschlossen wird, berechnet werden kann.

    Tipps

    Flächenstücke, die von Funktionsgraphen, welche unterhalb der x-Achse liegen, und der x-Achse eingeschlossen werden, müssen mit Beträgen berechnet werden: $A=\left|\int_a^bf(x)dx\right|$.

    Die Funktion $f(x)$ liegt sowohl oberhalb als auch unterhalb der Funktion $g(x)$.

    Wenn du dir unsicher bist, welche Funktion oberhalb und welche unterhalb liegt, kannst du immer mit Beträgen rechnen.

    Die beiden Funktionen schneiden sich dreimal: bei $x_1=-1$, $x_2=0$ und $x_3=3$.

    Lösung

    Wie in dem Bild zu erkennen ist, schließen die beiden Funktionen $f(x)$ und $g(x)$ zwei Flächenstücke ein, welche getrennt berechnet werden.

    Dies kann man entweder dadurch tun, dass man aus der Skizze entnimmt, welche Funktion oberhalb und welche unterhalb auf dem entsprechenden Intervall liegt. Die beiden Flächen könnten mit Beträgen berechnet werden.

    Also

    • entweder gilt $A=\int_{-1}^0(g(x)-f(x))dx+\int_{0}^3(f(x)-g(x))dx$, da $g(x)$ oberhalb von $f(x)$ auf $[-1;0]$ liegt und umgekehrt $f(x)$ oberhalb von $g(x)$ auf $[0;3]$,
    • oder $A=\left|\int_{-1}^0(f(x)-g(x))dx\right|+\left|\int_{0}^3(f(x)-g(x))dx\right|$.
    Es gilt

    $\begin{align*} A_1&=\int_{-1}^0(g(x)-f(x))dx\\ &=\int_{-1}^0(x^3-2x^2-3x)dx\\ &=\left[\frac14x^4-\frac23x^3-\frac32x^2\right]_{-1}^0\\ &=\left(\frac14\cdot 0^4-\frac23\cdot 0^3-\frac32\cdot 0^2\right)-\left(\frac14\cdot(-1)^4-\frac23\cdot(-1)^3-\frac32\cdot(-1)^2\right)\\ &=\frac7{12} \end{align*}$

    sowie

    $\begin{align*} A_2&=\int_0^3(f(x)-g(x))dx\\ &=\int_0^3(-x^3+2x^2+3x)dx\\ &=\left[-\frac14x^4+\frac23x^3+\frac32x^2\right]_0^3\\ &=\left(-\frac14\cdot 3^4+\frac23\cdot 3^3+\frac32\cdot 3^2\right)-\left(-\frac14\cdot0^4+\frac23\cdot0^3+\frac32\cdot0^2\right)\\ &=\frac{45}4 \end{align*}$

    Insgesamt ist $A=A_1+A_2=\frac7{12}+\frac{45}4=\frac{142}{12}=11,8\bar3$ [FE].

  • Ergänze das Vorgehen zur Berechnung eines Flächeninhaltes zwischen Funktionsgraphen.

    Tipps

    Wenn 2 (oder mehrere) Funktionen oberhalb der x-Achse ein Flächenstück einschließen, so können

    • zunächst die jeweiligen Flächen zwischen den Funktionen und der x-Achse berechnet werden.
    • Der gesuchte Flächeninhalt ergibt sich anschaulich dadurch, dass von der oberhalb gelegenen Fläche die unterhalb gelegene abgezogen wird.

    Die Integrationsgrenzen sind gerade die Stellen, an welchen die Funktionen sich schneiden.

    Lösung

    Um den Flächeninhalt eines Flächenstücks zu berechnen, welches von 2 Funktionen, $f(x)$ und $g(x)$, eingeschlossen wird, müssen

    • zunächst die Schnittstellen berechnet werden. Zwischen diesen wird das Flächenstück eingeschlossen.
    • Es wird die Differenzfunktion $d(x)=f(x)-g(x)$ aufgestellt. Dabei ist die Reihenfolge der Subtraktion nicht wichtig, wenn konsequent mit Beträgen gerechnet wird.
    • Diese Differenzfunktion wird integriert mit den Schnittstellen als Integrationsgrenzen.
    Dabei wird der Hauptsatz der Differential- und Integralrechnung angewendet:

    $\int_{a}^{b}f(x)dx=[F(x)]_a^b=F(b)-F(a)$.

    Es gilt $F'(x)=f(x)$.

  • Bestimme das Volumen des Dämmmaterials.

    Tipps

    Bestimme zunächst die Gleichungen der quadratischen Funktionen.

    • Der Scheitelpunkt der oberen ist $S_1(0|4)$,
    • der der unteren $S_2(0|2)$.

    Die Gleichung

    • der oberen Parabel lautet $f(x)=-x^2+4$,
    • der unteren Parabel $g(x)=-\frac12x^2+2$.

    Bestimme die Schnittpunkte $f(x)=g(x)$.

    Du könntest auch die Symmetrie ausnutzen und nur die Fläche von $0$ bis $2$ berechnen. Um $A$ zu erhalten, wird diese dann verdoppelt.

    Das Volumen in $m^3$ des Hallendaches ist dann gegeben durch $A\cdot 120$. Dabei ist $A$ der Flächeninhalt des Querschnitts.

    Lösung

    Ein solcher Aufgabentyp wird sehr gerne in Abituraufgaben verwendet.

    Zunächst müssen die beiden Gleichungen der Parabeln für die obere und die untere Kante des Daches aufgestellt werden. Bei beiden kann der Scheitelpunkt abgelesen werden:

    • Die obere hat den Scheitelpunkt $S_1(0|4)$, also ist $f(x)=ax^2+4$. Da $f(2)=0$ ist, folgt $a=-1$, also $f(x)=-x^2+4$.
    • Ebenso kann die Gleichung der unteren mit dem Scheitelpunkt $S_2(0|2)$ angegeben werden $g(x)=ax^2+2$. Da $g(2)=0$ ist, erhält man $a=-\frac12$. Somit ist $g(x)=-\frac12x^2+2$.
    Nun können die Schnittpunkte der beiden Funktionen berechnet werden:

    $\begin{align*} &&f(x)&=g(x)\\ &\Leftrightarrow&-x^2+4&=-\frac12x^2+2&|&+x^2|-2\\ &\Leftrightarrow&2&=\frac12x^2&|&\cdot2\\ &\Leftrightarrow&4&=x^2&|&\sqrt{~}\\ &\Rightarrow&x_1&=2\\ &&x_2&=-2. \end{align*}$

    Zur Vereinfachung der Rechnung kann nun der Flächeninhalt von $0$ bis $2$ berechnet und dann verdoppelt werden, da beide Funktionen und somit das Flächenstück symmetrisch zur y-Achse sind.

    Die Differenzfunktion ist $d(x)=f(x)-g(x)=\left(-x^2+4\right)-\left(-\frac12x^2+2\right)=-\frac12x^2-2$.

    $\begin{align*} A_1&=\int_0^2d(x)dx\\ &=\int_0^2\left(-\frac12x^2+2\right)dx\\ &=\left[-\frac16x^3+2x\right]_0^2\\ &=\left(-\frac16\cdot2^3+2\cdot2\right)-\left(-\frac16\cdot0^3+2\cdot0\right)\\ &=\frac83 \end{align*}$

    Damit ist $A=2\cdot A_1=2\cdot\frac83=\frac{16}3=5,\bar3$.

    Da eine Einheit im Koordinatensystem $10~m$ entspricht, entspricht eine Flächeneinheit im Koordinatensystem $100~m^2$. Somit ist $A=533,\bar3~m^2$

    Das Volumen des Daches und damit des Dämmmaterials beträgt $V=A\cdot120~m=533,\bar3\cdot120~m^3=64000~m^3$.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

7.938

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.907

Lernvideos

36.936

Übungen

34.195

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden