Wahrscheinlichkeiten mit dem Gegenereignis berechnen (Komplementärregel)
Erfahre, wie Ereignisse und ihre Gegenereignisse zusammen die gesamte Ergebnismenge umfassen. Die Komplementärregel besagt: $P(E) + P(\bar{E}) = 1$. Möchtest du mehr über die Anwendung und Berechnung erfahren? Interessiert? Dies und vieles mehr findest du im folgenden Text!
- Einführung: Was ist ein Komplementärereignis?
- Was ist die Komplementärregel?
- Komplementärregel – Definition

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Wahrscheinlichkeiten mit dem Gegenereignis berechnen (Komplementärregel) Übung
-
Beschreibe Ereignis und Gegenereignis.
TippsBei einem Zufallsexperiment nennen wir die möglichen Versuchsausgänge Ergebnisse und schreiben sie in die Ergebnismenge $\Omega$.
Mehrere Ergebnisse können wir zu einem Ereignis zusammenfassen.
Beispiel Würfel:
Das Gegenereignis dazu, eine ungerade Zahl zu werfen, ist eine gerade Zahl zu werfen.LösungBei einem Zufallsexperiment nennen wir die möglichen Versuchsausgänge Ergebnisse und schreiben sie in die Ergebnismenge $\Omega$. Mehrere Ergebnisse können wir zu einem Ereignis zusammenfassen.
Wenn zwei Ereignisse zusammen genau die gesamte Ergebnismenge eines Zufallsexperimentes abdecken, ohne dass sie sich dabei überschneiden oder einzelne Ergebnisse gar nicht abgedeckt werden, dann handelt es sich um ein Ereignispaar von Ereignis $E$ und Gegenereignis $\overline{E}$.
Beispiel Würfel:
Insgesamt gibt es sechs Ergebnisse. Fassen wir die Ergebnisse eins, drei und fünf zu dem Ereignis ungerade Zahl zusammen, gehören zu dem Gegenereignis alle Ergebnisse aus der Ergebnismenge, die nicht im Ereignis enthalten sind. Das Gegenereignis dazu, eine ungerade Zahl zu werfen, ist demnach eine gerade Zahl zu werfen.Wir können daher zu einem Ereignis und dem zugehörigen Gegenereignis grundsätzlich festhalten, dass sie keine Schnittmenge haben, also kein mögliches Ergebnis sowohl im Ereignis als auch im Gegenereignis liegt. Wir schreiben:
$E \cap \overline{E} = \emptyset$Gleichzeitig liegen aber auch alle möglichen Ergebnisse entweder im Ereignis oder im Gegenereignis, sodass beide Ereignisse zusammen die gesamte Ergebnismenge abdecken. Wir schreiben:
$E \cup \overline{E} = \Omega$Anwendung – die Komplementärregel:
Dies können wir nutzen, um Wahrscheinlichkeiten bei einem Zufallsexperiment zu berechnen. Denn wir wissen, dass die Wahrscheinlichkeit für die gesamte Ergebnismenge, also für das sichere Ereignis, immer gleich $1$ beziehungsweise $100\,\%$ ist. Da Ereignis und Gegenereignis die Ergebnismenge genau unter sich aufteilen, gilt:
$P(E) + P(\overline{E}) =1 = 100\,\%$ -
Gib die Überlegungen zur Berechnung der Wahrscheinlichkeit wieder, mindestens einmal eine Sechs zu würfeln.
TippsBetrachte zuerst das Ereignis $E$: Benenne es und liste alle zugehörigen Ergebnisse auf.
Erst wenn du das Gegenereignis $\overline{E}$ formuliert hast, kannst du seine Wahrscheinlichkeit bestimmen.
Als letzten Schritt formulierst du die Antwort auf die Ausgangsfrage.
LösungWir stellen zunächst einige allgemeine Überlegungen zum Ereignis und Gegenereignis an:
Wenn zwei Ereignisse zusammen genau die gesamte Ergebnismenge eines Zufallsexperimentes abdecken und keine Schnittmenge haben, dann handelt es sich um ein Ereignispaar von Ereignis $E$ und Gegenereignis $\overline{E}$:
- $E \cap \overline{E} = \emptyset$
- $E \cup \overline{E} = \Omega$
Dies können wir nutzen, um Wahrscheinlichkeiten bei einem Zufallsexperiment zu berechnen: Wir wissen, dass die Wahrscheinlichkeit für die gesamte Ergebnismenge immer gleich $1$ beziehungsweise $100\,\%$ ist. Da Ereignis und Gegenereignis die Ergebnismenge genau unter sich aufteilen, gilt:
$P(E) + P(\overline{E}) =1 = 100\,\%$Wir betrachten nun das gegebene Beispiel zum Würfelwurf:
Erster Schritt
Wir benennen das Ereignis:
$E$: mindestens eine SechsWir unterscheiden im Folgenden nur zwischen Sechs ($6$) und keine Sechs ($\overline{6}$).
Zweiter Schritt
Wir können alle Ergebnisse auflisten, die zu dem Ereignis $E$ führen:
$E = \{ (6;\overline{6};\overline{6}); (\overline{6};6;\overline{6}); (\overline{6};\overline{6};6); (6;6;\overline{6}); (6;\overline{6};6); (\overline{6};6;6); (6;6;6) \}$Die Berechnung der Wahrscheinlichkeit des Ereignisses $E$ ist sehr umständlich, da wir die Wahrscheinlichkeit für alle zugehörigen Ergebnisse bestimmen und addieren müssten. Wir verwenden daher die Komplentärregel.
Dritter Schritt
Wir betrachten das Gegenereignis: Das Gegenereignis $\overline{E}$ tritt ein, wenn gar keine Sechs fällt. Es gilt somit:
$\overline{E} = \{ (\overline{6};\overline{6};\overline{6}) \}$Vierter Schritt
Wir bestimmen die Wahrscheinlichkeit des Gegenereignisses:
$P(\overline{E}) = \dfrac{5}{6} \cdot \dfrac{5}{6} \cdot \dfrac{5}{6} = \dfrac{125}{216}$Fünfter Schritt
Jetzt können wir die Komplementärregel anwenden und die Wahrscheinlichkeit für $E$ berechnen:
$P(E)= 1 - P(\overline{E}) = 1 - \dfrac{125}{216} = \dfrac{91}{216} \approx 42{,}13\,\%$Sechster Schritt
Wir formulieren die Antwort:
Die Wahrscheinlichkeit dafür, mindestens eine Sechs zu würfeln, beträgt also $42{,}13\,\%$. -
Formuliere das Gegenereignis.
TippsEreignis und Gegenereignis decken zusammen die gesamte Ergebnismenge ab:
$E \cup \overline{E} = \Omega$
Beispiel:
- Ereignis: Es wird eine Karte größer oder gleich $8$ gezogen.
- Gegenereignis: Es wird eine Zahl kleiner als $8$ gezogen.
LösungEreignis und Gegenereignis:
Wenn zwei Ereignisse zusammen genau die gesamte Ergebnismenge eines Zufallsexperimentes abdecken, ohne dass sie sich dabei überschneiden oder einzelne Ergebnisse gar nicht abgedeckt werden, dann handelt es sich um ein Ereignispaar von Ereignis $E$ und Gegenereignis $\overline{E}$. Dabei gilt:
- Ereignis und Gegenereignis haben keine Schnittmenge: $E \cap \overline{E} = \emptyset$
- Ereignis und Gegenereignis decken zusammen die gesamte Ergebnismenge ab: $E \cup \overline{E} = \Omega$
Wir betrachten die gegebenen Beispiele:
- Ereignis: Es wird eine Karte größer als $3$ gezogen. (Das bedeutet eine $4$, $5$, $6$ etc.)
- Gegenereignis: Es wird eine $2$ oder $3$ gezogen.
- Ereignis: Es wird eine Karte größer oder gleich $3$ gezogen. (Das bedeutet eine $3$, $4$, $5$ etc.)
- Gegenereignis: Es wird eine Zahl kleiner als $3$ gezogen. (Das bedeutet eine $2$.)
- Ereignis: Es wird eine $4$ gezogen.
- Gegenereignis: Es wird keine $4$ gezogen.
- Ereignis: Es wird eine ungerade Zahl kleiner als $5$ gezogen. (Das bedeutet eine $3$.)
- Gegenereignis: Es wird keine $3$ gezogen.
-
Überprüfe die Wahrscheinlichkeiten der Ereignisse.
TippsFormuliere jeweils zuerst das Gegenereignis und berechne dessen Wahrscheinlichkeit. Wende dann die Pfadregel an.
Bei der Berechnung der Wahrscheinlichkeiten müssen wir die Pfadregel anwenden. Dabei müssen wir beachten, dass ohne Zurücklegen gezogen wird. Das bedeutet, dass nach dem ersten Zug nur noch $6$ Kugeln und nach dem zweiten Zug nur noch $5$ Kugeln in der Urne sind.
Beispiel:
- Ereignis $E$: mindestens eine grüne Kugel
- Gegenereignis $\overline{E}$: keine grüne Kugel
$P(\overline{E}) = \dfrac{5}{7} \cdot \dfrac{4}{6} \cdot \dfrac{3}{5}$Zwei Aussagen sind richtig.
LösungWir können die Wahrscheinlichkeiten mithilfe der Komplementärregel überprüfen:
Zwei Ereignisse, die zusammen genau die gesamte Ergebnismenge eines Zufallsexperimentes abdecken und keine Schnittmenge haben, nennt man Ereignis $E$ und Gegenereignis $\overline{E}$.
Da die Wahrscheinlichkeit für die gesamte Ergebnismenge immer gleich $1$ beziehungsweise $100\,\%$ ist, gilt:
$P(E) + P(\overline{E}) =1 = 100\,\%$Bei der Berechnung der Wahrscheinlichkeiten müssen wir die Pfadregel anwenden. Dabei müssen wir beachten, dass ohne Zurücklegen gezogen wird. Das bedeutet, dass nach dem ersten Zug nur noch $6$ Kugeln und nach dem zweiten Zug nur noch $5$ Kugeln in der Urne sind.
Wir überprüfen die Aussagen:
Aussage 1: „Die Wahrscheinlichkeit für mindestens eine rote Kugel beträgt $\dfrac{31}{35}$.“- Ereignis $E$: mindestens eine rote Kugel
- Gegenereignis $\overline{E}$: keine rote Kugel
$P(\overline{E}) = \dfrac{4}{7} \cdot \dfrac{3}{6} \cdot \dfrac{2}{5} = \dfrac{24}{210} = \dfrac{4}{35}$
Komplementärregel: $P(E)= 1 - P(\overline{E}) = 1 - \dfrac{4}{35} = \dfrac{31}{35}$Alternative Überlegung: $\dfrac{4}{35} + \dfrac{31}{35} = 1$
$\rightarrow$ Diese Aussage ist richtig.
Aussage 2: „Die Wahrscheinlichkeit für mindestens zwei verschiedene Farben beträgt $\dfrac{34}{35}$.“- Ereignis $E$: mindestens zwei verschiedene Farben
- Gegenereignis $\overline{E}$: alle Kugeln haben eine Farbe
Da drei Kugeln ohne Zurücklegen gezogen werden und da es nur zwei blaue und zwei grüne Kugeln gibt, kann die Farbe nicht Blau und nicht Grün sein. Das Gegenereignis ist also gleichbedeutend mit dreimal rot:$P(\overline{E}) = \dfrac{3}{7} \cdot \dfrac{2}{6} \cdot \dfrac{1}{5} = \dfrac{6}{210} = \dfrac{1}{35}$
Komplementärregel: $P(E)= 1 - P(\overline{E}) = 1 - \dfrac{1}{35} = \dfrac{34}{35}$Alternative Überlegung: $\dfrac{1}{35} + \dfrac{34}{35} = 1$
$\rightarrow$ Diese Aussage ist ebenfalls richtig.
Aussage 3: „Die Wahrscheinlichkeit für mindestens eine blaue Kugel beträgt $\dfrac{2}{7}$.“- Ereignis $E$: mindestens eine blaue Kugel
- Gegenereignis $\overline{E}$: keine blaue Kugel
$P(\overline{E}) = \dfrac{5}{7} \cdot \dfrac{4}{6} \cdot \dfrac{3}{5} = \dfrac{60}{210} = \dfrac{2}{7}$
Komplementärregel: $P(E)= 1 - P(\overline{E}) = 1 - \dfrac{2}{7} = \dfrac{5}{7}$Alternative Überlegung: $\dfrac{2}{7} + \dfrac{2}{7} \neq 1$
$\rightarrow$ Diese Aussage ist falsch.
Aussage 4: „Die Wahrscheinlichkeit für höchstens zwei grüne Kugeln beträgt $\dfrac{29}{35}$.“- Ereignis $E$: höchstens zwei grüne Kugeln
- Gegenereignis $\overline{E}$: mehr als zwei grüne Kugeln.
Da drei Kugeln ohne Zurücklegen gezogen werden und da es nur zwei grüne Kugeln gibt, handelt es sich hierbei um ein unmögliches Ereignis:$P(\overline{E}) = 0$
Komplementärregel: $P(E)= 1 - P(\overline{E}) = 1 - 0 = 1$$\rightarrow$ Diese Aussage ist auch falsch.
-
Gib an, welche Ergebnisse zum Ereignis und welche zum Gegenereignis gehören.
TippsInsgesamt gibt es sechs Ergebnisse, nämlich die Augenzahlen $1$ bis $6$. Betrachten wir das Ereignis ungerade Zahl, gehören zu dem Gegenereignis alle Ergebnisse aus der Ergebnismenge, die nicht im Ereignis enthalten sind.
Eine gerade Zahl ist durch $2$ teilbar.
LösungWenn zwei Ereignisse zusammen genau die gesamte Ergebnismenge eines Zufallsexperimentes abdecken, ohne dass sie sich dabei überschneiden oder einzelne Ergebnisse gar nicht abgedeckt werden, dann handelt es sich um ein Ereignispaar von Ereignis und Gegenereignis.
Beispiel Würfel:
Insgesamt gibt es sechs Ergebnisse, nämlich die Augenzahlen $1$ bis $6$. Betrachten wir das Ereignis ungerade Zahl, gehören zu dem Gegenereignis alle Ergebnisse aus der Ergebnismenge, die nicht im Ereignis enthalten sind, nämlich alle geraden Zahlen.Somit gilt:
- Ereignis: ungerade Zahl: $1$, $3$ und $5$
- Gegenereignis: gerade Zahl: $2$, $4$ und $6$
-
Berechne die gesuchten Wahrscheinlichkeiten.
TippsVerwende das Gegenereignis $\overline{E}$ und die Komplementärregel:
$P(E)= 1- P(\overline{E})$
Du kannst die Wahrscheinlichkeiten für die Ampeln wie folgt berechnen:
- erste Ampel: $20$ von $50$ Sekunden grün $\rightarrow \quad P_1(\text{grün})= \dfrac{20}{50} = \dfrac{2}{5}$
- für das fünfte Teammitglied gilt: $10$ Mädchen von $26$ Kindern $\rightarrow \quad P_5(\text{Mädchen})= \dfrac{10}{26}$
- für das erste Teammitglied gilt: $14$ Mädchen von $30$ Kindern $\rightarrow \quad P_1(\text{Mädchen})= \dfrac{14}{30}$
- für das zweite Teammitglied gilt: $13$ Mädchen von $29$ Kindern $\rightarrow \quad P_2(\text{Mädchen})= \dfrac{13}{29}$
- für das dritte Teammitglied gilt: $12$ Mädchen von $28$ Kindern $\rightarrow \quad P_3(\text{Mädchen})= \dfrac{12}{28}$
- für das vierte Teammitglied gilt: $11$ Mädchen von $27$ Kindern $\rightarrow \quad P_4(\text{Mädchen})= \dfrac{11}{27}$
- für das fünfte Teammitglied gilt: $10$ Mädchen von $26$ Kindern $\rightarrow \quad P_5(\text{Mädchen})= \dfrac{10}{26}$
LösungBei der Berechnung der Wahrscheinlichkeit eines Ereignisses $E$ müssen wir die Wahrscheinlichkeiten aller zugehörigen Ergebnisse bestimmen und diese addieren. Gehören zu einem Ereignis viele Ergebnisse, kann dies sehr aufwändig sein. In vielen Fällen hilft es dann, das Gegenereignis $\overline{E}$ zu betrachten. Denn die Komplementärregel besagt:
$P(E) + P(\overline{E}) =1$ bzw.
$P(E)= 1- P(\overline{E})$Wir bearbeiten jetzt die gegebenen Aufgaben:
Aufgabe 1:
Hilal kommt auf ihrem Schulweg an drei Ampeln vorbei: Die erste Ampel zeigt immer $20$ Sekunden Grün und $30$ Sekunden Rot. Die zweite Ampel steht immer $30$ Sekunden auf Grün und $30$ Sekunden auf Rot. Die letzte Ampel zeigt $15$ Sekunden Grün und $60$ Sekunden Rot.
Es ist völlig zufällig, ob eine Ampel, die Hilal passiert, auf Grün oder Rot steht.Wir benennen zunächst das Ereignis $E$: mindestens eine Ampel rot.
Das Gegenereignis lautet folglich: $\overline{E}$: alle Ampeln grün.Wir betrachten nun die Wahrscheinlichkeiten der einzelnen Ampeln:
- für die erste Ampel gilt: $20$ von $50$ Sekunden grün $\rightarrow \quad P_1(\text{grün})= \dfrac{20}{50} = \dfrac{2}{5}$
- für die zweite Ampel gilt: $30$ von $60$ Sekunden grün $\rightarrow \quad P_2(\text{grün})= \dfrac{30}{60} = \dfrac{1}{2}$
- für die dritte Ampel gilt: $15$ von $75$ Sekunden grün $\rightarrow \quad P_3(\text{grün})= \dfrac{15}{75} = \dfrac{1}{5}$
Wir können danach die Wahrscheinlichkeit des Gegenereignisses berechnen:
$P(\overline{E}) = \dfrac{2}{5} \cdot \dfrac{1}{2} \cdot \dfrac{1}{5} = \dfrac{1}{25}$
Die Anwendung der Komplementärregel ergibt:
$P(E)= 1 - P(\overline{E}) = 1 - \dfrac{1}{25} = \dfrac{24}{25} = 0{,}96 = 96\,\%$
Die Wahrscheinlichkeit dafür, dass Hilal an mindestens einer Ampel warten muss, beträgt somit $96\,\%$.
Aufgabe 2:
Aus einer Klasse mit 14 Schülerinnen und 16 Schülern soll ein Fünferteam gebildet werden. Dazu werden zufällig fünf Kinder ausgewählt.
Wir benennen zuerst das Ereignis $E$: mindestens ein Junge.
Das Gegenereignis lautet demnach: $\overline{E}$: fünf Mädchen.Wir betrachten nun die einzelnen Wahrscheinlichkeiten:
- für das fünfte Teammitglied gilt: $10$ Mädchen von $26$ Kindern $\rightarrow \quad P_5(\text{Mädchen})= \dfrac{10}{26}$
- für das erste Teammitglied gilt: $14$ Mädchen von $30$ Kindern $\rightarrow \quad P_1(\text{Mädchen})= \dfrac{14}{30}$
- für das zweite Teammitglied gilt: $13$ Mädchen von $29$ Kindern $\rightarrow \quad P_2(\text{Mädchen})= \dfrac{13}{29}$
- für das dritte Teammitglied gilt: $12$ Mädchen von $28$ Kindern $\rightarrow \quad P_3(\text{Mädchen})= \dfrac{12}{28}$
- für das vierte Teammitglied gilt: $11$ Mädchen von $27$ Kindern $\rightarrow \quad P_4(\text{Mädchen})= \dfrac{11}{27}$
- für das fünfte Teammitglied gilt: $10$ Mädchen von $26$ Kindern $\rightarrow \quad P_5(\text{Mädchen})= \dfrac{10}{26}$
Wir können jetzt die Wahrscheinlichkeit des Gegenereignisses berechnen:
$P(\overline{E}) = \dfrac{14}{30} \cdot \dfrac{13}{29} \cdot \dfrac{12}{28} \cdot \dfrac{11}{27} \cdot \dfrac{10}{26}= \dfrac{11}{783}$
Die Anwendung der Komplementärregel ergibt:
$P(E)= 1 - P(\overline{E}) = 1 - \dfrac{11}{783} = \dfrac{772}{783} \approx 0{,}99 = 99\,\%$
Die Wahrscheinlichkeit dafür, dass in dem Team mindestens ein Junge ist, beträgt somit $99\,\%$.
9.369
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.220
Lernvideos
38.700
Übungen
33.508
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt