Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Wahrscheinlichkeiten mit dem Gegenereignis berechnen (Komplementärregel)

Erfahre, wie Ereignisse und ihre Gegenereignisse zusammen die gesamte Ergebnismenge umfassen. Die Komplementärregel besagt: $P(E) + P(\bar{E}) = 1$. Möchtest du mehr über die Anwendung und Berechnung erfahren? Interessiert? Dies und vieles mehr findest du im folgenden Text!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Wahrscheinlichkeiten mit dem Gegenereignis berechnen (Komplementärregel)

Was besagt die Komplementärregel?

1/5
Bewertung

Ø 3.3 / 23 Bewertungen
Die Autor*innen
Avatar
Team Digital
Wahrscheinlichkeiten mit dem Gegenereignis berechnen (Komplementärregel)
lernst du in der 7. Klasse - 8. Klasse - 9. Klasse - 10. Klasse

Wahrscheinlichkeiten mit dem Gegenereignis berechnen (Komplementärregel) Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Wahrscheinlichkeiten mit dem Gegenereignis berechnen (Komplementärregel) kannst du es wiederholen und üben.
  • Tipps

    Bei einem Zufallsexperiment nennen wir die möglichen Versuchsausgänge Ergebnisse und schreiben sie in die Ergebnismenge $\Omega$.

    Mehrere Ergebnisse können wir zu einem Ereignis zusammenfassen.

    Beispiel Würfel:
    Das Gegenereignis dazu, eine ungerade Zahl zu werfen, ist eine gerade Zahl zu werfen.

    Lösung

    Bei einem Zufallsexperiment nennen wir die möglichen Versuchsausgänge Ergebnisse und schreiben sie in die Ergebnismenge $\Omega$. Mehrere Ergebnisse können wir zu einem Ereignis zusammenfassen.

    Wenn zwei Ereignisse zusammen genau die gesamte Ergebnismenge eines Zufallsexperimentes abdecken, ohne dass sie sich dabei überschneiden oder einzelne Ergebnisse gar nicht abgedeckt werden, dann handelt es sich um ein Ereignispaar von Ereignis $E$ und Gegenereignis $\overline{E}$.

    Beispiel Würfel:
    Insgesamt gibt es sechs Ergebnisse. Fassen wir die Ergebnisse eins, drei und fünf zu dem Ereignis ungerade Zahl zusammen, gehören zu dem Gegenereignis alle Ergebnisse aus der Ergebnismenge, die nicht im Ereignis enthalten sind. Das Gegenereignis dazu, eine ungerade Zahl zu werfen, ist demnach eine gerade Zahl zu werfen.

    Wir können daher zu einem Ereignis und dem zugehörigen Gegenereignis grundsätzlich festhalten, dass sie keine Schnittmenge haben, also kein mögliches Ergebnis sowohl im Ereignis als auch im Gegenereignis liegt. Wir schreiben:
    $E \cap \overline{E} = \emptyset$

    Gleichzeitig liegen aber auch alle möglichen Ergebnisse entweder im Ereignis oder im Gegenereignis, sodass beide Ereignisse zusammen die gesamte Ergebnismenge abdecken. Wir schreiben:
    $E \cup \overline{E} = \Omega$

    Anwendung – die Komplementärregel:
    Dies können wir nutzen, um Wahrscheinlichkeiten bei einem Zufallsexperiment zu berechnen. Denn wir wissen, dass die Wahrscheinlichkeit für die gesamte Ergebnismenge, also für das sichere Ereignis, immer gleich $1$ beziehungsweise $100\,\%$ ist. Da Ereignis und Gegenereignis die Ergebnismenge genau unter sich aufteilen, gilt:
    $P(E) + P(\overline{E}) =1 = 100\,\%$

  • Tipps

    Betrachte zuerst das Ereignis $E$: Benenne es und liste alle zugehörigen Ergebnisse auf.

    Erst wenn du das Gegenereignis $\overline{E}$ formuliert hast, kannst du seine Wahrscheinlichkeit bestimmen.

    Als letzten Schritt formulierst du die Antwort auf die Ausgangsfrage.

    Lösung

    Wir stellen zunächst einige allgemeine Überlegungen zum Ereignis und Gegenereignis an:

    Wenn zwei Ereignisse zusammen genau die gesamte Ergebnismenge eines Zufallsexperimentes abdecken und keine Schnittmenge haben, dann handelt es sich um ein Ereignispaar von Ereignis $E$ und Gegenereignis $\overline{E}$:

    • $E \cap \overline{E} = \emptyset$
    • $E \cup \overline{E} = \Omega$

    Dies können wir nutzen, um Wahrscheinlichkeiten bei einem Zufallsexperiment zu berechnen: Wir wissen, dass die Wahrscheinlichkeit für die gesamte Ergebnismenge immer gleich $1$ beziehungsweise $100\,\%$ ist. Da Ereignis und Gegenereignis die Ergebnismenge genau unter sich aufteilen, gilt:
    $P(E) + P(\overline{E}) =1 = 100\,\%$

    Wir betrachten nun das gegebene Beispiel zum Würfelwurf:

    Erster Schritt
    Wir benennen das Ereignis:
    $E$: mindestens eine Sechs

    Wir unterscheiden im Folgenden nur zwischen Sechs ($6$) und keine Sechs ($\overline{6}$).

    Zweiter Schritt
    Wir können alle Ergebnisse auflisten, die zu dem Ereignis $E$ führen:
    $E = \{ (6;\overline{6};\overline{6}); (\overline{6};6;\overline{6}); (\overline{6};\overline{6};6); (6;6;\overline{6}); (6;\overline{6};6); (\overline{6};6;6); (6;6;6) \}$

    Die Berechnung der Wahrscheinlichkeit des Ereignisses $E$ ist sehr umständlich, da wir die Wahrscheinlichkeit für alle zugehörigen Ergebnisse bestimmen und addieren müssten. Wir verwenden daher die Komplentärregel.

    Dritter Schritt
    Wir betrachten das Gegenereignis: Das Gegenereignis $\overline{E}$ tritt ein, wenn gar keine Sechs fällt. Es gilt somit:
    $\overline{E} = \{ (\overline{6};\overline{6};\overline{6}) \}$

    Vierter Schritt
    Wir bestimmen die Wahrscheinlichkeit des Gegenereignisses:
    $P(\overline{E}) = \dfrac{5}{6} \cdot \dfrac{5}{6} \cdot \dfrac{5}{6} = \dfrac{125}{216}$

    Fünfter Schritt
    Jetzt können wir die Komplementärregel anwenden und die Wahrscheinlichkeit für $E$ berechnen:
    $P(E)= 1 - P(\overline{E}) = 1 - \dfrac{125}{216} = \dfrac{91}{216} \approx 42{,}13\,\%$

    Sechster Schritt
    Wir formulieren die Antwort:
    Die Wahrscheinlichkeit dafür, mindestens eine Sechs zu würfeln, beträgt also $42{,}13\,\%$.

  • Tipps

    Ereignis und Gegenereignis decken zusammen die gesamte Ergebnismenge ab:

    $E \cup \overline{E} = \Omega$

    Beispiel:

    • Ereignis: Es wird eine Karte größer oder gleich $8$ gezogen.
    • Gegenereignis: Es wird eine Zahl kleiner als $8$ gezogen.
    Lösung

    Ereignis und Gegenereignis:
    Wenn zwei Ereignisse zusammen genau die gesamte Ergebnismenge eines Zufallsexperimentes abdecken, ohne dass sie sich dabei überschneiden oder einzelne Ergebnisse gar nicht abgedeckt werden, dann handelt es sich um ein Ereignispaar von Ereignis $E$ und Gegenereignis $\overline{E}$. Dabei gilt:

    • Ereignis und Gegenereignis haben keine Schnittmenge: $E \cap \overline{E} = \emptyset$
    • Ereignis und Gegenereignis decken zusammen die gesamte Ergebnismenge ab: $E \cup \overline{E} = \Omega$

    Wir betrachten die gegebenen Beispiele:

    • Ereignis: Es wird eine Karte größer als $3$ gezogen. (Das bedeutet eine $4$, $5$, $6$ etc.)
    • Gegenereignis: Es wird eine $2$ oder $3$ gezogen.

    • Ereignis: Es wird eine Karte größer oder gleich $3$ gezogen. (Das bedeutet eine $3$, $4$, $5$ etc.)
    • Gegenereignis: Es wird eine Zahl kleiner als $3$ gezogen. (Das bedeutet eine $2$.)

    • Ereignis: Es wird eine $4$ gezogen.
    • Gegenereignis: Es wird keine $4$ gezogen.

    • Ereignis: Es wird eine ungerade Zahl kleiner als $5$ gezogen. (Das bedeutet eine $3$.)
    • Gegenereignis: Es wird keine $3$ gezogen.

  • Tipps

    Formuliere jeweils zuerst das Gegenereignis und berechne dessen Wahrscheinlichkeit. Wende dann die Pfadregel an.

    Bei der Berechnung der Wahrscheinlichkeiten müssen wir die Pfadregel anwenden. Dabei müssen wir beachten, dass ohne Zurücklegen gezogen wird. Das bedeutet, dass nach dem ersten Zug nur noch $6$ Kugeln und nach dem zweiten Zug nur noch $5$ Kugeln in der Urne sind.

    Beispiel:

    • Ereignis $E$: mindestens eine grüne Kugel
    • Gegenereignis $\overline{E}$: keine grüne Kugel

    $P(\overline{E}) = \dfrac{5}{7} \cdot \dfrac{4}{6} \cdot \dfrac{3}{5}$

    Zwei Aussagen sind richtig.

    Lösung

    Wir können die Wahrscheinlichkeiten mithilfe der Komplementärregel überprüfen:
    Zwei Ereignisse, die zusammen genau die gesamte Ergebnismenge eines Zufallsexperimentes abdecken und keine Schnittmenge haben, nennt man Ereignis $E$ und Gegenereignis $\overline{E}$.
    Da die Wahrscheinlichkeit für die gesamte Ergebnismenge immer gleich $1$ beziehungsweise $100\,\%$ ist, gilt:
    $P(E) + P(\overline{E}) =1 = 100\,\%$

    Bei der Berechnung der Wahrscheinlichkeiten müssen wir die Pfadregel anwenden. Dabei müssen wir beachten, dass ohne Zurücklegen gezogen wird. Das bedeutet, dass nach dem ersten Zug nur noch $6$ Kugeln und nach dem zweiten Zug nur noch $5$ Kugeln in der Urne sind.

    Wir überprüfen die Aussagen:


    Aussage 1: „Die Wahrscheinlichkeit für mindestens eine rote Kugel beträgt $\dfrac{31}{35}$.“

    • Ereignis $E$: mindestens eine rote Kugel
    • Gegenereignis $\overline{E}$: keine rote Kugel

    $P(\overline{E}) = \dfrac{4}{7} \cdot \dfrac{3}{6} \cdot \dfrac{2}{5} = \dfrac{24}{210} = \dfrac{4}{35}$
    Komplementärregel: $P(E)= 1 - P(\overline{E}) = 1 - \dfrac{4}{35} = \dfrac{31}{35}$

    Alternative Überlegung: $\dfrac{4}{35} + \dfrac{31}{35} = 1$

    $\rightarrow$ Diese Aussage ist richtig.


    Aussage 2: „Die Wahrscheinlichkeit für mindestens zwei verschiedene Farben beträgt $\dfrac{34}{35}$.“

    • Ereignis $E$: mindestens zwei verschiedene Farben
    • Gegenereignis $\overline{E}$: alle Kugeln haben eine Farbe

    Da drei Kugeln ohne Zurücklegen gezogen werden und da es nur zwei blaue und zwei grüne Kugeln gibt, kann die Farbe nicht Blau und nicht Grün sein. Das Gegenereignis ist also gleichbedeutend mit dreimal rot:

    $P(\overline{E}) = \dfrac{3}{7} \cdot \dfrac{2}{6} \cdot \dfrac{1}{5} = \dfrac{6}{210} = \dfrac{1}{35}$
    Komplementärregel: $P(E)= 1 - P(\overline{E}) = 1 - \dfrac{1}{35} = \dfrac{34}{35}$

    Alternative Überlegung: $\dfrac{1}{35} + \dfrac{34}{35} = 1$

    $\rightarrow$ Diese Aussage ist ebenfalls richtig.


    Aussage 3: „Die Wahrscheinlichkeit für mindestens eine blaue Kugel beträgt $\dfrac{2}{7}$.“

    • Ereignis $E$: mindestens eine blaue Kugel
    • Gegenereignis $\overline{E}$: keine blaue Kugel

    $P(\overline{E}) = \dfrac{5}{7} \cdot \dfrac{4}{6} \cdot \dfrac{3}{5} = \dfrac{60}{210} = \dfrac{2}{7}$
    Komplementärregel: $P(E)= 1 - P(\overline{E}) = 1 - \dfrac{2}{7} = \dfrac{5}{7}$

    Alternative Überlegung: $\dfrac{2}{7} + \dfrac{2}{7} \neq 1$

    $\rightarrow$ Diese Aussage ist falsch.


    Aussage 4: „Die Wahrscheinlichkeit für höchstens zwei grüne Kugeln beträgt $\dfrac{29}{35}$.“

    • Ereignis $E$: höchstens zwei grüne Kugeln
    • Gegenereignis $\overline{E}$: mehr als zwei grüne Kugeln.

    Da drei Kugeln ohne Zurücklegen gezogen werden und da es nur zwei grüne Kugeln gibt, handelt es sich hierbei um ein unmögliches Ereignis:

    $P(\overline{E}) = 0$
    Komplementärregel: $P(E)= 1 - P(\overline{E}) = 1 - 0 = 1$

    $\rightarrow$ Diese Aussage ist auch falsch.

  • Tipps

    Insgesamt gibt es sechs Ergebnisse, nämlich die Augenzahlen $1$ bis $6$. Betrachten wir das Ereignis ungerade Zahl, gehören zu dem Gegenereignis alle Ergebnisse aus der Ergebnismenge, die nicht im Ereignis enthalten sind.

    Eine gerade Zahl ist durch $2$ teilbar.

    Lösung

    Wenn zwei Ereignisse zusammen genau die gesamte Ergebnismenge eines Zufallsexperimentes abdecken, ohne dass sie sich dabei überschneiden oder einzelne Ergebnisse gar nicht abgedeckt werden, dann handelt es sich um ein Ereignispaar von Ereignis und Gegenereignis.

    Beispiel Würfel:
    Insgesamt gibt es sechs Ergebnisse, nämlich die Augenzahlen $1$ bis $6$. Betrachten wir das Ereignis ungerade Zahl, gehören zu dem Gegenereignis alle Ergebnisse aus der Ergebnismenge, die nicht im Ereignis enthalten sind, nämlich alle geraden Zahlen.

    Somit gilt:

    • Ereignis: ungerade Zahl: $1$, $3$ und $5$
    • Gegenereignis: gerade Zahl: $2$, $4$ und $6$
  • Tipps

    Verwende das Gegenereignis $\overline{E}$ und die Komplementärregel:

    $P(E)= 1- P(\overline{E})$

    Du kannst die Wahrscheinlichkeiten für die Ampeln wie folgt berechnen:

    • erste Ampel: $20$ von $50$ Sekunden grün $\rightarrow \quad P_1(\text{grün})= \dfrac{20}{50} = \dfrac{2}{5}$
    • für das fünfte Teammitglied gilt: $10$ Mädchen von $26$ Kindern $\rightarrow \quad P_5(\text{Mädchen})= \dfrac{10}{26}$

    • für das erste Teammitglied gilt: $14$ Mädchen von $30$ Kindern $\rightarrow \quad P_1(\text{Mädchen})= \dfrac{14}{30}$

    • für das zweite Teammitglied gilt: $13$ Mädchen von $29$ Kindern $\rightarrow \quad P_2(\text{Mädchen})= \dfrac{13}{29}$

    • für das dritte Teammitglied gilt: $12$ Mädchen von $28$ Kindern $\rightarrow \quad P_3(\text{Mädchen})= \dfrac{12}{28}$

    • für das vierte Teammitglied gilt: $11$ Mädchen von $27$ Kindern $\rightarrow \quad P_4(\text{Mädchen})= \dfrac{11}{27}$

    • für das fünfte Teammitglied gilt: $10$ Mädchen von $26$ Kindern $\rightarrow \quad P_5(\text{Mädchen})= \dfrac{10}{26}$
    Lösung

    Bei der Berechnung der Wahrscheinlichkeit eines Ereignisses $E$ müssen wir die Wahrscheinlichkeiten aller zugehörigen Ergebnisse bestimmen und diese addieren. Gehören zu einem Ereignis viele Ergebnisse, kann dies sehr aufwändig sein. In vielen Fällen hilft es dann, das Gegenereignis $\overline{E}$ zu betrachten. Denn die Komplementärregel besagt:

    $P(E) + P(\overline{E}) =1$ bzw.
    $P(E)= 1- P(\overline{E})$

    Wir bearbeiten jetzt die gegebenen Aufgaben:


    Aufgabe 1:

    Hilal kommt auf ihrem Schulweg an drei Ampeln vorbei: Die erste Ampel zeigt immer $20$ Sekunden Grün und $30$ Sekunden Rot. Die zweite Ampel steht immer $30$ Sekunden auf Grün und $30$ Sekunden auf Rot. Die letzte Ampel zeigt $15$ Sekunden Grün und $60$ Sekunden Rot.
    Es ist völlig zufällig, ob eine Ampel, die Hilal passiert, auf Grün oder Rot steht.

    Wir benennen zunächst das Ereignis $E$: mindestens eine Ampel rot.
    Das Gegenereignis lautet folglich: $\overline{E}$: alle Ampeln grün.

    Wir betrachten nun die Wahrscheinlichkeiten der einzelnen Ampeln:


    • für die erste Ampel gilt: $20$ von $50$ Sekunden grün $\rightarrow \quad P_1(\text{grün})= \dfrac{20}{50} = \dfrac{2}{5}$

    • für die zweite Ampel gilt: $30$ von $60$ Sekunden grün $\rightarrow \quad P_2(\text{grün})= \dfrac{30}{60} = \dfrac{1}{2}$

    • für die dritte Ampel gilt: $15$ von $75$ Sekunden grün $\rightarrow \quad P_3(\text{grün})= \dfrac{15}{75} = \dfrac{1}{5}$

    Wir können danach die Wahrscheinlichkeit des Gegenereignisses berechnen:

    $P(\overline{E}) = \dfrac{2}{5} \cdot \dfrac{1}{2} \cdot \dfrac{1}{5} = \dfrac{1}{25}$

    Die Anwendung der Komplementärregel ergibt:

    $P(E)= 1 - P(\overline{E}) = 1 - \dfrac{1}{25} = \dfrac{24}{25} = 0{,}96 = 96\,\%$

    Die Wahrscheinlichkeit dafür, dass Hilal an mindestens einer Ampel warten muss, beträgt somit $96\,\%$.


    Aufgabe 2:

    Aus einer Klasse mit 14 Schülerinnen und 16 Schülern soll ein Fünferteam gebildet werden. Dazu werden zufällig fünf Kinder ausgewählt.

    Wir benennen zuerst das Ereignis $E$: mindestens ein Junge.
    Das Gegenereignis lautet demnach: $\overline{E}$: fünf Mädchen.

    Wir betrachten nun die einzelnen Wahrscheinlichkeiten:


    • für das fünfte Teammitglied gilt: $10$ Mädchen von $26$ Kindern $\rightarrow \quad P_5(\text{Mädchen})= \dfrac{10}{26}$

    • für das erste Teammitglied gilt: $14$ Mädchen von $30$ Kindern $\rightarrow \quad P_1(\text{Mädchen})= \dfrac{14}{30}$

    • für das zweite Teammitglied gilt: $13$ Mädchen von $29$ Kindern $\rightarrow \quad P_2(\text{Mädchen})= \dfrac{13}{29}$

    • für das dritte Teammitglied gilt: $12$ Mädchen von $28$ Kindern $\rightarrow \quad P_3(\text{Mädchen})= \dfrac{12}{28}$

    • für das vierte Teammitglied gilt: $11$ Mädchen von $27$ Kindern $\rightarrow \quad P_4(\text{Mädchen})= \dfrac{11}{27}$

    • für das fünfte Teammitglied gilt: $10$ Mädchen von $26$ Kindern $\rightarrow \quad P_5(\text{Mädchen})= \dfrac{10}{26}$

    Wir können jetzt die Wahrscheinlichkeit des Gegenereignisses berechnen:

    $P(\overline{E}) = \dfrac{14}{30} \cdot \dfrac{13}{29} \cdot \dfrac{12}{28} \cdot \dfrac{11}{27} \cdot \dfrac{10}{26}= \dfrac{11}{783}$

    Die Anwendung der Komplementärregel ergibt:

    $P(E)= 1 - P(\overline{E}) = 1 - \dfrac{11}{783} = \dfrac{772}{783} \approx 0{,}99 = 99\,\%$

    Die Wahrscheinlichkeit dafür, dass in dem Team mindestens ein Junge ist, beträgt somit $99\,\%$.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.369

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.220

Lernvideos

38.700

Übungen

33.508

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden