Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Das Dualsystem

Das Dualsystem wird vor allem von Computern benutzt und basiert auf der Zahl 2. Es ermöglicht die Darstellung von Zahlen ausschließlich durch die Ziffern 0 und 1. Wie wandelst du Dezimalzahlen in Dualzahlen um? Interessiert? Das und vieles mehr findest du im obigen Text!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.4 / 161 Bewertungen
Die Autor*innen
Avatar
Team Digital
Das Dualsystem
lernst du in der 5. Klasse - 6. Klasse

Das Dualsystem Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Das Dualsystem kannst du es wiederholen und üben.
  • Definiere das Dualsystem.

    Tipps

    Für die Dezimaldarstellung der Zahl zwölf schreibst du an die Zehnerstelle die Ziffer $1$, an die Einerstelle die Ziffer $2$.

    Die Anzahl der Ziffern in einem Stellenwertsystem entspricht genau der Größe der Basis.

    Die dritte Stelle im Dualsystem hat den Stellenwert $4$, die vierte Stelle den Stellenwert $8$.

    Lösung

    Das Dezimalsystem und das Dualsystem sind beides Stellenwertsysteme. Beim Dezimalsystem verwendet man die Basis $10$, beim Dualsystem die Basis $2$. In einem Stellenwertsystem werden Zahlen durch Ziffern an der richtigen Stelle geschrieben. Die Bedeutung der Stellen ist durch die Stellenwerte festgelegt. Die Stellenwerte sind Potenzen der Basis, d.h. den nächsthöheren Stellenwert erhältst du immer durch Multiplikation mit der Basis. Im Dezimalsystem laufen die Ziffern von $0$ bis $9$, im Dualsystem von $0$ bis $1$.

    Die Zahl $110101_2$ ist im Dualsystem notiert. Du kannst sie ins Dezimalsystem umrechnen. Dazu setzt du die Stellenwerte in die folgende Rechnung ein. Die Ziffern der Dualzahl geben dir an, welche Stellenwerte du nehmen musst:

    $110101_2 = 1 \cdot 32 + 1 \cdot 16 + 1\cdot 4 + 1 \cdot 1=53_{10}$

  • Gib dieselben Zahlen im Dual- und Dezimalsystem an.

    Tipps

    Bei den meisten Zahlen hat die Binärdarstellung mehr Ziffern als die Dezimaldarstellung.

    Die Binärdarstellung $1101_2$ gehört zu der Zahl $1101_2 = 1 \cdot 8 + 1 \cdot 4 + 0 \cdot 2 + 1 \cdot 1 = 13_{10}$.

    Im Dualsystem kommen nur die Ziffern $0$ und $1$ vor.

    Lösung

    Die Ziffern einer Dualzahl sind die Koeffizienten der Stellenwerte in der Berechnung der Zahl. Die Zahl $1101_2$ rechnest du zum Beispiel so aus:

    $1101_2 = 1 \cdot 8 + 1 \cdot 4 + 0 \cdot 2 + 1 \cdot 1 = 13_{10}$

    Nach demselben Prinzip kannst du auch alle anderen Dualzahlen berechnen.

    Richtig sind diese Gleichungen:

    • $94_{10} = 1011110_2$, denn $1011110_2 = 64 + 16 + 8 + 4 + 2 = 94_{10}$.
    • $111_2 = 7_{10}$, denn $111_2 = 4 + 2 + 1 = 7_{10}$.
    • $53_{10}=110101_2$, denn $110101_2 = 32 + 16 + 4 + 1 = 53_{10}$.
    • $1_2 = 1_{10}$, denn $1_2 = 1 \cdot 1 = 1_{10}$.
    Falsch sind die folgenden Gleichungen:

    • $111_{10} = 111_{2}$, denn $111_2 = 4 + 2 + 1 = 7_{10}$.
    • $110101_2 = 35_{10}$, denn $110101_2 = 32 + 16 + 4 + 1 = 53_{10}$.
    • $1011110_2 = 49_{10}$, denn $101110_2 = 64 + 16 + 8 + 4 + 2 = 94_{10}$.
  • Vergleiche die Zahlen.

    Tipps

    Eine ungerade Zahl endet in der Dualdarstellung mit $1$.

    Die Dualdarstellung von $2^k$ ist eine $1$ gefolgt von $k$ Nullen.

    Es gilt $111_2 + 1_2 = 1000_2 = 8_{10}$.

    Lösung

    Die Ziffern einer Zahldarstellung in einem Stellenwertsystem geben an, wie oft der jeweilige Stellenwert in der Zahl vorkommt. Daher ist $111_2 = 1 \cdot 4 + 1 \cdot 2 + 1 \cdot 1$ und $111_{10} = 1 \cdot 100 + 1 \cdot 10 + 1 \cdot 1$. Du kannst die Zahlen aus dem Dualsystem ins Dezimalsystem umrechnen und umgekehrt. Du erhältst dann folgende Zuordnung:

    • $1110110_2 = 118_{10}$
    • $1101110_2 = 110_{10}$
    • $1010_2 = 10_ {10}$
    • $11111_2 = 31_{10}$
  • Analysiere die Aussagen zu Dezimal- und Binärdarstellungen.

    Tipps

    Überlege, welche Ziffern im Dualsystem vorkommen.

    Die Ziffer an der Einerstelle einer Dezimalzahl ist der Rest, den du erhältst, wenn du die Zahl durch $10$ dividierst.

    Da die Basis des Dualsystems kleiner ist als die Basis des Dezimalsystems, hat die Binärdarstellung einer Zahl im Allgemeinen mehr Ziffern als die Dezimaldarstellung. Überlege, ob das für alle Zahlen gilt.

    Lösung

    Folgende Aussagen sind richtig:

    • „Jede Ziffer des Binärsystems ist auch eine Ziffer im Dezimalsystem.“ Das Dualsystem hat die Ziffern $0$ und $1$, das Dezimalsystem die Ziffern $0$ bis $9$.
    • „Die Zahl $1101_2$ ist kleiner als die Zahl $1101_{10}$.“ Denn $1101_2 = 8 + 4 + 1 = 13_{10} < 1101_{10}$.
    • „$0$ und $1$ sind die beiden einzigen Zahlen, die in der Binärdarstellung nicht länger sind als in der Dezimaldarstellung.“ Da die Basis der Binärdarstellung kleiner ist als die Basis der Dezimaldarstellung, ist die Binärdarstellung im Allgemeinen länger als die Dezimaldarstellung. Die einzigen Ausnahmen sind die Zahlen $0_2 = 0_{10}$ und $1_2 = 1_{10}$.
    • „Die Ziffern einer Dezimaldarstellung sind die Reste bei der fortgesetzten Division dieser Zahl durch $10$, in der umgekehrten Reihenfolge.“ Teilst du hundertdreiundzwanzig durch $10$, so erhältst du zwölf und den Rest $3$. Teilst du zwölf durch $10$, so erhältst du eins und den Rest $2$. Teilst du schließlich eins durch $10$, so bleibt nur der Rest $1$. Die Zahl hundertdreiundzwanzig kannst du jetzt als Dezimalzahl aus den Resten aufbauen: Ganz links steht der Rest der letzten Division, dann der vorletzte usw.: Du erhältst die Dezimalzahl $123$.
    Folgende Aussagen sind falsch:

    • „Jede durch eine Ziffernfolge im Binärsystem dargestellte Zahl ist kleiner als die durch die gleiche Ziffernfolge im Dezimalsystem dargestellte Zahl.“ Die Aussage ist richtig, wenn du „kleiner“ durch „kleiner oder gleich“ bzw. „nicht größer“ ersetzt.
    • „Es gibt keine Zahlen, die im Dualsystem und im Dezimalsystem durch dieselbe Ziffernfolge dargestellt werden.“ Die gibt es doch, nämlich $0_2 = 0_{10}$ und $1_2 = 1_{10}$.
    • „Die Ziffern der Binärdarstellung einer Zahl sind die Reste bei der fortgesetzten Division dieser Zahl durch $2$, in der Reihenfolge ihres Auftretens.“ Die Aussage ist richtig, wenn du die Reihenfolge der Ziffern umkehrst.
  • Stelle die Zahl im Dezimalsystem dar.

    Tipps

    Der Übergang von einem Stellenwert zum nächsten geschieht durch Multiplikation mit $2$.

    Die erste Stelle rechts hat den Stellenwert $1$.

    Trage die Ziffern der Dualzahl als Koeffizienten der Stellenwerte in der Rechnung ein.

    Lösung

    Von einer Stelle zur nächsten Stelle gelangst du im Dualsystem durch Multiplikation mit $2$. Die kleinste Stelle hat den Stellenwert $1$, danach kommen von rechts nach links die Stellenwerte $2$, $4$, $8$, $16$, $32$ usw.

    Die Ziffern einer Dualzahl sind die Koeffizienten, mit denen die Stellenwerte beim Ausrechnen der Zahl multipliziert werden. Im Dualsystem sind $0$ und $1$ die einzigen Ziffern. Wenn du die Stellenwerte an der richtigen Stelle einsetzt, kannst du die Zahl $110101_2$ ins Dezimalsystem umrechnen.

  • Analysiere die Rechnungen.

    Tipps

    Multiplikation mit $10_2$ hat im Dualsystem denselben Effekt wie Multiplikation mit $10_{10}$ im Dezimalsystem.

    Lösung

    Multiplikation mit $10_2$ hat im Dualsystem denselben Effekt wie Multiplikation mit $10_{10}$ im Dezimalsystem: Die Multiplikation verschiebt die Ziffern um eine Stelle nach links und hängt rechts eine $0$ an. Dass das immer so ist, hängt mit den Stellenwerten zusammen: Multiplikation mit $2$ im Dualsystem bzw. mit $10$ im Dezimalsystem ist genau der Übergang von einer Stelle zur nächstgrößeren.

    Folgende Rechnungen sind richtig:

    • $1_2 + 1_2 = 1_2 \cdot 10_2$, denn $1_2 + 1_2 = 1_{10} + 1_{10} = 2_{10} = 10_{2} = 1_2 \cdot 10_2$.
    • $10_2 \cdot 10_2 = 100_2$, denn $10_2 \cdot 10_2 = 2_{10} \cdot 2_{10} = 4_{10} = 100_2$.
    • $10_2 \cdot 10_2 = 10_2 + 10_2$, denn $10_2 \cdot 10_2 = 100_2 = 4_{10} = 2_{10} + 2_{10} = 10_2 + 10_2$.
    Falsch sind die folgenden Rechnungen:

    • $1010_2 + 101_2 = 1110_2$, denn $1010_2 + 101_2 = 1111_2$.
    • $1_2 \cdot 1_2 = 10_2$, denn $1_2 \cdot 1_2 = 1_2$.
    • $1000_2 : 10_2 = 10_2$, denn $1000_2 : 10_2 = 100_2$.
    • $1010_2 - 110_2 = 101_2$, denn $1010_2 - 110_2 = 100_2$.