Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Kettenregel für Funktionen mit mehreren Veränderlichen

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 5.0 / 4 Bewertungen
Die Autor*innen
Avatar
Frank Steiger
Kettenregel für Funktionen mit mehreren Veränderlichen
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Kettenregel für Funktionen mit mehreren Veränderlichen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Kettenregel für Funktionen mit mehreren Veränderlichen kannst du es wiederholen und üben.
  • Tipps

    Beachte, dass die partiellen Ableitung nach $x$ mit $\frac{\delta f}{\delta x}$ bezeichnet wird.

    Zuerst muss nach jeder der beiden Veränderlichen partiell abgeleitet werden.

    Jede der Veränderlichen muss noch nach $t$ abgeleitet werden.

    Kennst du noch die Kettenregel für Funktionen mit einer Veränderlichen? Vielleicht erkennst du etwas wieder:

    $(f(g(x)))'=f'(g(x))\cdot g'(x)$.

    Lösung

    Um die Funktion $z(t)$ nach $t$ abzuleiten, benötigt man zunächst die partiellen Ableitungen der Funktion nach den beiden Veränderlichen $x$ sowie $y$. Dann werden diese Veränderlichen jeweils auch noch nach $t$ abgeleitet.

    Letztlich ergibt sich die folgende Ableitung:

    $\frac{dz}{dt}=\frac{\delta f}{\delta x}\cdot\frac{dx}{dt}+\frac{\delta f}{\delta y}\cdot\frac{dy}{dt}$.

  • Tipps

    Verwende die Kettenregel

    $\frac{dz}{dt}=\frac{\delta f}{\delta x}\cdot\frac{dx}{dt}+\frac{\delta f}{\delta y}\cdot\frac{dy}{dt}$.

    Du berechnest die partielle Ableitung einer Funktion nach einer Veränderlichen, indem du die andere Veränderliche als konstant annimmst. Nun wendest du die bekannten Ableitungsregeln an.

    Lösung

    Wir wollen die Funktion $z(t)=f(x(t);y(t))=2x(t)+y(t)^2+y(t)^3$ mit $x(t)=t$ und $y(t)=t^2$ näher untersuchen. Zunächst werden die partiellen Ableitungen von $f$ bestimmt:

    • $\frac{\delta f}{\delta x}=2$
    • $\frac{\delta f}{\delta y}=2y+3y^2$
    Nun wird jede der Veränderlichen nach $t$ abgeleitet. Da die Veränderlichen in Abhängigkeit zu $t$ stehen, ist dies nicht schwer:

    • $\frac{dx}{dt}=1$ sowie
    • $\frac{dy}{dt}=2t$.
    Nun kann die Kettenregel angewendet werden:

    $\frac{dz}{dt}=\frac{\delta f}{\delta x}\cdot\frac{dx}{dt}+\frac{\delta f}{\delta y}\cdot\frac{dy}{dt}$.

    Also ist $\frac{dz}{dt}=2+4y(t)\cdot t+6y(t)^2\cdot t$.

    Nun kann noch $y(t)=t^2$ eingesetzt werden und man erhält:

    $\frac{dz}{dt}=2+4t^2\cdot t+6(t^2)^2\cdot t=2+4t^3+6t^5$.

  • Tipps

    Wenn du nach $x$ partiell ableiten möchtest, betrachtest du $y$ als konstant.

    Schaue dir das folgende Beispiel an $f(x;y)=3xy-2x^2y$.

    Es ist $\frac{\delta f}{\delta x}=3y-4xy$.

    Verwende jeweils die bekannten Ableitungsregeln:

    • die Potenzregel $(x^n)'=n\cdot x^{n-1}$,
    • die Faktorregel $(k\cdot f(x))'=k\cdot f'(x)$ sowie
    • die Summenregel $(f(x)\pm g(x))'=f'(x)\pm g'(x)$.
    Lösung

    Die Kettenregel für Funktionen mit mehreren Veränderlichen lautet:

    $\frac{dz}{dt}=\frac{\delta f}{\delta x}\cdot\frac{dx}{dt}+\frac{\delta f}{\delta y}\cdot\frac{dy}{dt}$.

    Es werden also zunächst die partiellen Ableitungen benötigt. Hierfür wird jeweils eine Variable konstant gehalten und nach der anderen mit den bekannten Ableitungsregeln abgeleitet:

    • $\frac{\delta f}{\delta x}=4xy-3y^3$
    • $\frac{\delta f}{\delta y}=2x^2-9xy^2$
  • Tipps

    Verwende die Kettenregel für Funktionen mit mehreren Veränderlichen

    $\frac{dz}{dt}=\frac{\delta f}{\delta x}\cdot\frac{dx}{dt}+\frac{\delta f}{\delta y}\cdot\frac{dy}{dt}$.

    Du könntest die Ableitung noch weiter umformen zu

    $\frac{dz}{dt}=2\sin(t)\cos(t)(\sin(t)+3\cos(t)^2)$.

    Hier siehst du einen (möglichen!) Zwischenschritt der Rechnung.

    Lösung

    Die partiellen Ableitungen erster Ordnung der Funktion $f(x;y)=2x^2y-3xy^3$ sind gegeben durch:

    • $\frac{\delta f}{\delta x}=4xy-3y^3$
    • $\frac{\delta f}{\delta y}=2x^2-9xy^2$
    Nun können noch die Ableitungen der Veränderlichen berechnet werden. Diese sind

    • für $x(t)=\sin(t)$ gegeben durch $x'(t)=\cos(t)$ und
    • für $y(t)=\cos(t)$ durch $y'(t)=-\sin(t)$.
    Nun kann die Kettenregel $\frac{dz}{dt}=\frac{\delta f}{\delta x}\cdot\frac{dx}{dt}+\frac{\delta f}{\delta y}\cdot\frac{dy}{dt}$ angewendet werden:

    $\frac{dz}{dt}=(4x(t)y(t)-3y(t)^3)\cdot\sin(t)-(2x(t)^2-9x(t)y(t)^2)\cdot\cos(t)$.

    Nun werden die Definitionen von $x(t)=\sin(t)$ sowie $y(t)=\cos(t)$ eingesetzt:

    $\frac{dz}{dt}=(4\sin(t)\cos(t)-3\cos(t)^3)\cdot\sin(t)-(2\sin(t)^2-9\sin(t)\cos(t)^2)\cdot\cos(t)$.

    Dies kann noch weiter umgeformt und zusammengefasst werden:

    $\begin{array}{rcl} &&(4\sin(t)\cos(t)-3\cos(t)^3)\cdot\sin(t)-(2\sin(t)^2-9\sin(t)\cos(t)^2)\cdot\cos(t)\\ &=&4\sin(t)^2\cos(t)-3\cos(t)^3\sin(t)-2\sin(t)^2\cos(t)+9\sin(t)\cos(t)^3\\ &=&2\sin(t)^2\cos(t)+6\sin(t)\cos(t)^3 \end{array}$

    Am schwierigsten ist es, die Übersicht zu behalten. Der Rest ist gar nicht so schwierig.

  • Tipps

    Wenn du nach $x$ partiell ableiten möchtest, betrachtest du die andere Variable $y$ als konstant.

    Verwende die Ableitungsregeln, welche du von Funktionen mit einer Veränderlichen kennst.

    Beachte: $f(x)=x^2+5$, dann ist $f'(x)=2x$.

    Lösung

    Die zu untersuchende Funktion lautet $f(x;y)=x^2+y$. Um die Kettenregel anzuwenden, muss man zunächst die partiellen Ableitungen bestimmen.

    Hierfür betrachtet man die jeweilige Veränderliche, nach welcher nicht abgeleitet wird, als konstant und leitet nach der anderen Veränderlichen ab:

    • $\frac{\delta f}{\delta x}=2x$
    • $\frac{\delta f}{\delta y}=1$
  • Tipps

    Die partiellen Ableitungen sind

    • $\frac{\delta f}{\delta x}=2y^2-4xy$ sowie
    • $\frac{\delta f}{\delta y}=4xy-2x^2$.

    Die Ableitungen der inneren Funktionen sind

    • $x'(t)=3t^2$ und
    • $y(t)=-1$.

    Verwende die Kettenregel für Funktionen mehrerer Veränderlicher:

    $\frac{dz}{dt}=\frac{\delta f}{\delta x}\cdot\frac{dx}{dt}+\frac{\delta f}{\delta y}\cdot\frac{dy}{dt}$.

    Lösung

    Die partiellen Ableitungen der Funktion $f(x;y)=2xy^2-2x^2y$ sind

    • $\frac{\delta f}{\delta x}=2y^2-4xy$ sowie
    • $\frac{\delta f}{\delta y}=4xy-2x^2$.
    Gemeinsam mit den Ableitungen der inneren Funktionen $x(t)=t^3$ und $y(t)=2-t$

    • $x'(t)=3t^2$ und
    • $y(t)=-1$
    kann die Kettenregel angewendet werden:

    $\frac{dz}{dt}=(2y(t)^2-4x(t)y(t))\cdot3t^2+(4x(t)y(t)-2x(t)^2)\cdot(-1)$.

    Jetzt werden die inneren Funktionen eingesetzt:

    $\frac{dz}{dt}=(2(2-t)^2-4t^3(2-t))\cdot3t^2+(4t^3(2-t)-2(t^3)^2)\cdot(-1)$.

    Zuletzt wird noch weiter umgeformt:

    $\begin{array}{rcl} &&(2(2-t)^2-4t^3(2-t))\cdot3t^2+(4t^3(2-t)-2(t^3)^2)\cdot(-1)\\ &=&(2(4-4t+t^2)-8t^3+4t^4)\cdot3t^2-(8t^3-4t^4-2t^6)\\ &=&(8-8t+2t^2-8t^3+4t^4)\cdot 3t^2-8t^3+4t^4+2t^6\\ &=&24t^2-24t^3+6t^4-24t^5+12t^6-8t^3+4t^4+2t^6\\ &=&14t^6-24t^5+10t^4-32t^3+24t^2 \end{array}$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.360

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.212

Lernvideos

38.688

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden