30 Tage risikofrei testen

Überzeugen Sie sich von der Qualität unserer Inhalte im Basis- oder Premium-Paket.

Überzeugen Sie sich von der Qualität unserer Inhalte.

30 Tage risikofrei testen

Flächen unter Funktionsgraphen – Übungen

Mit Spaß üben und Aufgaben lösen

Entschuldige, die Übungen sind zurzeit nur auf Tablets und Computer verfügbar. Um die Übungen zu nutzen, logge dich bitte mit einem dieser Geräte ein.

Brauchst du noch Hilfe? Schau jetzt das Video zur Übung Flächen unter Funktionsgraphen

Wir widmen uns der Frage: Wie können wir den Flächeninhalt von Flächenstücken berechnen, welche durch einen Funktionsgraphen und der x-Achse eingeschlossen werden? Um diese Frage zu beantworten, benötigen wir die Integralrechnung. Ich zeige dir anschaulich an Beispielen, wie du mit Hilfe der Nullstellen und dem Hauptsatz der Differential- und Integralrechnung die Flächenstücke unter dem Funktionsgraphen berechnen kannst. Mit einer Fläche unter dem Funktionsgraphen ist immer das Flächenstück gemeint, welches der Funktionsgraph mit der x-Achse einschließt. Du wirst dabei wiederholen, wie man das bestimmte Integral über einem bestimmten Intervall berechnet. Schreibe mir Fragen oder Anregungen, sofern du welche hast. Viel Spaß damit wünscht dir Frank.

Zum Video
Aufgaben in dieser Übung
Beschreibe, wie der Flächeninhalt unter Funktionsgraphen berechnet werden kann.
Berechne den Flächeninhalt, den der Graph der Funktion $f(x)$ über dem Intervall $I=[-2;1]$ mit der x-Achse einschließt.
Bestimme die Nullstellen der Funktion $f(x)=x^3-x^2-2x$.
Ermittle den Flächeninhalt, den die kubische Funktion mit der x-Achse einschließt.
Gib den Hauptsatz der Differential- und Integralrechnung an.
Leite die Gesamtfläche des Logos her.