Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Raumzeit und Minkowski-Diagramme

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 5.0 / 4 Bewertungen
Die Autor*innen
Avatar
sofatutor Team
Raumzeit und Minkowski-Diagramme
lernst du in der 11. Klasse - 13. Klasse

Raumzeit und Minkowski-Diagramme Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Lerntext Raumzeit und Minkowski-Diagramme kannst du es wiederholen und üben.
  • Tipps

    Die klassische Mechanik gilt für die alltäglichen kleinen Geschwindigkeiten, die Relativitätstheorie bei großen Geschwindigkeiten bis hin zur Lichtgeschwindigkeit.

    Wie viele Achsen und somit wie viele Systeme findest du in dem Minkowski-Diagramm dargestellt?

    Welche Eigenschaften kennzeichnen ein Inertialsystem?

    Lösung

    In der klassischen Mechanik wird die Bewegung von Körpern beschrieben, die vergleichsweise geringe Geschwindigkeiten besitzen. Sie ist historisch gesehen ein sehr altes Teilgebiet der Physik, da Untersuchungen mit der zur Verfügung stehenden Technik schon vor Jahrhunderten durchgeführt wurden. Die klassische Mechanik ist somit ein Sonderfall der speziellen Relativitätstheorie, die die Bewegung von Körpern bis hin zur Lichtgeschwindigkeit beschreibt.

    Da sich die Aussagen der speziellen Relativitätstheorie aber unserem direkten Erfahrungsumfeld entziehen, sind sie sehr abstrakt. Minkowski-Diagramme wie das oben abgebildete dienen daher dazu, die spezielle Relativitätstheorie anschaulicher zu machen.

    In dem gezeigten Minkowski-Diagramm werden dabei zwei Inertialsysteme dargestellt. Eines der beiden Systeme mit den Koordinaten S(x, t) ruht dabei, das andere mit den Koordinaten S'(x', t') bewegt sich geradlinig gleichförmig von dem ruhenden System weg. Zum Zeitpunkt t=0 und t'=0 fallen jedoch beide Systeme zusammen.

  • Tipps

    Inertialsysteme (IS) besitzen in einem Minkowski-Daigramm jeweils zwei Achsen.

    Das ruhende Inertialsystem besitzt eine Winkelhalbierende, eine Gerade parallel zur x-Achse und eine Gerade parallel zur y-Achse.

    Was ist das Besondere an der Winkelhalbierenden. Bedenke die typischen Einheiten der x- und der t-Achse. Welche Größe bleibt bei den beiden anderen Geraden jeweils konstant?

    Lösung

    Wenn du ein Minkowski-Diagramm zeichnest, so beginnst du in der Regel mit den Achsen des ruhenden Inertialsystems (hier grau). Die x-Achse verläuft parallel, die y-Achse steht senkrecht darauf.

    Die Achsen werden so eingeteilt, dass die Winkelhalbierende in diesem Koordinatensystem die Ausbreitung eines Lichtsignals in x-Richtung beschreibt (hier lila): Das Signal legt in jeder Sekunde die Strecke einer Lichtsekunde (etwa $3\cdot 10^5km$) zurück.

    In diesem Bezugssystem liegen alle zeitgleichen Ereignisse auf einer Gerade parallel zur x-Ache (hier blau) und alle ortsgleichen Ereignisse auf einer Geraden parallel zur y-Ache (hier grün).

    Das Achsen des bewegten Bezugssystems (hier rot) werden in das ruhende Bezugssystem mit eingezeichnet. Der Winkel zwischen den beiden Zeit- und den beiden Ortsachsen sowie die Einteilung der Achse des bewegten Bezugsystems ist von der Geschwindigkeit des bewegten Bezugsystems abhängig.

  • Tipps

    In welchen Farben sind Zukunft und Vergangenheit dargestellt?

    Wie wird der gelbe Bereich im zweiten Diagramm abgegrenzt?

    Lösung

    In unserer alltäglichen Erfahrung gibt es die Vergangenheit, die durch die Gegenwart von der Zukunft abgegrenzt ist. Alle Ereignisse der Gegenwart können von vergangenen Ereignissen beeinflusst worden sein. Habe ich beispielsweise letzten Abend vergessen, meinen Wecker zu stellen, wache ich möglicherweise zu spät auf. Dieses gegenwärtige Ereignis kann wiederum Ereignisse in der Zukunft beeinflussen. Vielleicht verpasse ich durch das Verschlafen meinen Bus.

    Die spezielle Relativitätstheorie berücksichtigt die Endlichkeit der Lichtgeschwindigkeit. Das Minkowski-Diagramm wird um die Lichtgeraden ergänzt (siehe Abbildung). Dadurch entsteht im Diagramm neben der möglichen Ereignisvergangenheit (grün) und der möglichen Ereigniszukunft (rot) ein weiterer Bereich (gelb). Ereignisse in diesem Bereich können weder E beeinflussen noch von E beeinflusst werden. Um ein Ereignis zu beeinflussen, muss ein Informationsaustausch stattfinden können. Dies ist maximal mit Lichtgeschwindigkeit möglich. Informationen, die beispielsweise ein Lichtsignal aufgrund großer Entfernungen nicht der notwendigen Zeit übertragen kann, haben auf die Handlungen des Empfängers keinen Einfluss.

  • Tipps

    $tan\alpha=\frac vc$

    Verwende zur Berechnung die Umkehrfunktion des Tangens auf deinem Taschenrechner. Achte auf die Ausgabe in Grad.

    Lösung

    In dem ruhenden Bezugssystem findet im Punkt P (6 Ls/5 s) ein Ereignis statt (siehe Abbildung). Um die Koordinaten des Ereignisses P in Bezug auf das bewegte Bezugssystem grafisch aus dem Minkowski-Diagramm ablesen zu können, werden folgende Werte bestimmt.

    (1) Für den Winkel zwischen den Achsen im Minkowski-Diagramm ergibt sich:

    $tan\alpha=\frac vc=\frac {0,6c} {c}=0,6$ und somit

    $\alpha=31,0°$.

    (2) Die Achseneinteilung an den Achsen des bewegten Bezugssystems liefert:

    $e'=e\cdot \sqrt {\frac {1+\frac {v^2} {c^2}} {1-\frac {v^2} {c^2}}}=e\cdot \sqrt {\frac {1+0,6^2} {1-0,6^2}}=1,5~e$.

    Mit Hilfe dieser Informationen kann das bewegte Inertialsystem in das Minkowski-Diagramm eingezeichnet werden (rote Achsen - siehe Abbildung). Anschließend können die Koordinaten des Punktes in Bezug auf das bewegte Inertialsystem abgelesen werden: $P(3,7 Ls | 1,8 s)$.

  • Tipps

    Verwende die Abkürzungen der deutschen Einheiten.

    Eine Einheit der Ortsachse beschreibt eine Strecke von $3\cdot 10^5km$.

    Lösung

    Im Minkowski-Diagramm wird für gewöhnlich die Ortsachse $x$ oder $x'$ in der Einheit Lichtsekunde $Ls$ beschriftet. Damit ist die Strecke gemeint, die das Licht in einer Sekunde zurücklegt, also etwa $3\cdot 10^5km$. Die Zeitachse $t$ oder $t'$ wird dann in Sekunden $s$ angegeben, also in der gleichen zeitlichen Dimension.

    Dadurch vereinfacht sich beispielsweise die Darstellung der Lichtgerade, die bei richtiger Achseneinteilung einfach als Winkelhalbierende eingezeichnet werden kann. Wichtig ist nur, dass man sich verdeutlicht, dass die Einheit Lichtsekunde eine Strecke beschreibt, obwohl sie eine Zeitangabe enthält.

  • Tipps

    Welche Rolle spielt die Lichtgeschwindigkeit c in der speziellen Relativitätstheorie?

    Lösung

    Keine Geschwindigkeit ist größer als die Lichtgeschwindigkeit $c$. Dies gilt auch für die Relativgeschwindigkeit $v$ zwischen zwei Inertialsystemen.

    Die Relativgeschwindigkeit $v$ kann somit kein Vielfaches der Lichtgeschwindigkeit (wie $v=2c$) betragen. Das Verhältnis $\frac vc$ darf daher ebenfalls nicht größer als Eins sein wie im Beispiel $tan\alpha=\frac vc=\frac 54$. Außerdem darf der Winkel $\alpha$ keine Werte über $45$ Grad annehmen, da in diesem Fall die Relativgeschwindigkeit ebenfalls größer als die Lichtgeschwindigkeit wäre.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.360

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.211

Lernvideos

38.688

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden