30 Tage risikofrei testen

Überzeugen Sie sich von der Qualität unserer Inhalte im Basis- oder Premium-Paket.

Überzeugen Sie sich von der Qualität unserer Inhalte.

30 Tage risikofrei testen

Eigenschwingung, erzwungene Schwingung und Resonanz 06:34 min

6 Kommentare
  1. Default

    Tolles Video. Die Übungen helfen mir auch, aber hier hat sich mal wieder (wie leider so häufig bei sofatutor) ein Fehler bei dem vierten Punkt der Übung eingeschlichen: Die Dauer einer natürlichen Schwingung eines Pendels mit der Fadenlänge von 30 cm ist 1,1 s und nicht 1,01 s. Ansonsten danke für eure Videos und Übungen, ihr bin mir sicher ihr seid für viele eine große Hilfe.

    Von Sam233, vor 3 Monaten
  2. Karsten

    @E Hruby
    dieser Satz setzt sich aus mehreren Einzelinformationen zusammen:

    *Es liegt ein Oszillator, also ein schwingungsfähiges System, vor und dieser besitzt eine Eigenfrequenz.

    *Für Resonanz muss nun durch äußere Kräfte eine Schwingung angeregt werden. Man spricht von einer erzwungenen Schwingung.

    *Dafür muss die Erregerfrequenz, der äußeren Schwingung, ein beliebiges ganzzahliges Vielfaches der Eigenfrequenz des Oszillators sein.

    Sind alle diese Bedingungen erfüllt kommt es zum Resonanzfall und im extremsten Fall zur Resonanzkatastrophe.

    Von Karsten Schedemann, vor mehr als einem Jahr
  3. Default

    gutes Video! Aber ich verstehe den Staz " Resonanz ist das erzwungene Schwingen bei einer bestimmten Erregerfrequenz" überhaupt nicht! Ich kann mir darunter echt nichts vorstellen!:(

    Von E Hruby, vor mehr als einem Jahr
  4. Default

    @Ulla:
    Das ist eine gute Frage/ Beobachtung!

    Dazu vorab eine Bemerkung: in der Physik benutzen wir ja meistens Modelle. Wenn wir etwas einen Oszillator nennen, dann reduizieren wir dieses reale etwas auf ein physikalisch idealisiertes Objekt. Dabei lassen wir dann je nachdem wie stark wir etwas idealisieren viele seiner realen Eigenschaften außer acht.
    Wir versuchen uns immer auf die wesentlichen Eigenschaften zu konzentrieren.
    Du kannst das mit einer Skizze vergleichen: wenn du jemandem eine Wegbeschreibung aufzeichnest, idealisierst du die reale Welt auf eine Karte mit Straßennamen und Häuserblocks, dabei ist aber zum Beispiel egal, welche Farbe die Häuser haben und wie viele Autos am Straßenrand stehen.

    Wenn das erstmal klar ist, dann kommt die Antwort zu deiner Frage ganz natürlich:
    Ja, ein Gebäude können wir auch als Oszillator betrachten, denn es kann schwingen. Dabei lassen wir wahrscheinlich aber viele reale Eigenschaften des Gebäudes außer acht, wie zum Beispiel seine genaue Form, die Tatsache, dass es aus verschiedenen Materialien besteht und so weiter. Man erhält trotzdem schon Ergebnisse mit denen man grobe Abschätzungen machen kann.
    Zum Beispiel wie die Höhe des Gebäudes die Eigenfrequenz beeinflusst und in welchen Größenordnungen sich diese Frequenz bewegt.

    Je genauer unser Modell die Realität widerspiegelt, desto besser werden die Voraussagen, die wir berechnen können, aber desto komplizierter werden auch die Rechnungen ;)

    Von Lars Karlsson, vor mehr als 2 Jahren
  5. Default

    Eine Sache verstehe ich nicht: Jeder Oszillator hat eine Eigenfrequenz und eine Eigenschwingung, aber heißt das dann nicht, dass jeder Körper ein Oszillator sein muss? Wenn ein Gebäude bei einem Erdbeben einstürtzt durch Resonanz, ist dieses Gebäude doch ein Oszillator oder?

    Von Ulla T, vor mehr als 2 Jahren
  1. Default

    Sehr gut hab ne 1-2 bekommen:-)

    Von Vbauzhadze, vor fast 3 Jahren
Mehr Kommentare