Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Resonanz und Resonanzkatastrophe

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.2 / 9 Bewertungen
Die Autor*innen
Avatar
Jakob Köbner
Resonanz und Resonanzkatastrophe
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Resonanz und Resonanzkatastrophe Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Resonanz und Resonanzkatastrophe kannst du es wiederholen und üben.
  • Gib an, was Resonanz ist.

    Tipps

    Auch auf dem Spielplatz kannst du Resonanz beobachten. Den Effekt der Resonanz können wir anhand einer Kinderschaukel nachvollziehen.

    Leicht gedämpfte Systeme können durch Resonanz zu großen Amplituden aufgeschaukelt werden.

    Lösung

    Von Resonanz spricht man, wenn einem schwingfähigen System periodisch mit seiner Eigenfrequenz Energie zugefügt wird.

    Dabei kann ein System, welches nur leicht gedämpft ist, zu sehr großen Amplituden aufgeschaukelt werden.

    Als Beispiel kannst du dir eine Schaukel auf dem Spielplatz vorstellen. Die Schaukel schwingt mit Eigenschwingung hin und her. Wenn du diese zum richtigen Zeitpunkt anstößt, so bekommt die Schaukel mehr Schwung und die Amplitude ist somit erhöht. Stößt du die Schaukel zu einem falschen Zeitpunkt an, so wird die Amplitude jedoch nicht erhöht.

    Man muss dem schwingfähigen System der Schaukel also im richtigen Moment Energie hinzufügen, um die Amplitude der Schwingung zu erhöhen und somit die Effekte der Resonanz beobachten zu können.

  • Nenne die Eigenschaften der Resonanzkatastrophe.

    Tipps

    Jedes System hat eine Grenze, ab der es keine weitere Energie mehr aufnehmen kann.

    Einem schwingenden System kann Energie mittels Dämpfung entnommen werden.

    Lösung

    Wird einem schwingfähigen System periodisch Energie hinzugefügt, so tritt Resonanz auf.

    Die Effekte der Resonanz sind die Erhöhung der Amplitude der Schwingung in Abhängigkeit von der Dämpfung des Systems.

    Ist ein System mindestens ausreichend gedämpft, so kann genügend Energie über die Dämpfung abgegeben werden und die Erhöhung der Amplituden ist lediglich mäßig.

    Ist ein Systems jedoch sehr schwach gedämpft, so kann nur sehr wenig Energie abgegeben werden und die Amplitude der Schwingung steigt weiter und weiter an.

    Da jedes System irgendwann nicht noch mehr Energie aufnehmen kann, kann es vorkommen, dass ein System durch zu hohe Auslenkung der Schwingung letztendlich zerstört wird.

    Man spricht dann von Resonanzkatastrophe.

    Anhand der Brücke kannst du dir gut vorstellen, dass es eine Grenze der größten Auslenkung geben muss, an der die Brücke versagt. Auch hier spricht man von einer Resonanzkatastrophe.

  • Erkläre, wie man die Auswirkungen der Resonanz auf ein System verringern kann.

    Tipps

    Jedes System hat eine Energiespeichergrenze.

    Die Amplitude der Schwingung gibt den Betrag der gesamten in einem System gespeicherten Energie an.

    Lösung

    Um zu verstehen, warum ein System durch Resonanz so stark beeinflusst werden kann, dass es sich selbst zerstört, schauen wir einmal genauer auf den energetischen Systemzustand.

    Ein schwingfähiges System speichert Energie grundsätzlich in zwei Formen: als kinetische Energie und in einem anderen Bereich der Schwingung als potentielle oder als Spannenergie.

    Bekannt ist, dass eine Energie stets von der betrachteten Masse abhängig ist.

    Mit dem Ansatz :

    $E_{pot}= mgh $ können wir leicht ausrechnen, wie viel Gesamtenergie in einem Fadenpendelsystem vorhanden ist, wenn wir den Wendepunkt der Bewegung betrachten.

    Demnach muss also ein Pendel der Länge $L$ und der Masse $m$ , auch wenn die Eigenfrequenz unverändert bleibt, eine geringere Energie tragen als das Pendel der Länge $L$ und der Masse $2 \cdot m$.

    Außerdem erkennen wir, dass die Amplitude der Schwingung den Betrag der gesamten in einem System gespeicherten Energie angibt.

    Erhöhen wir die Amplitude, so erhöht sich $h$ in der Formel der potentiellen Energie.

    Per Definition wird durch Resonanz die Amplitude immer weiter erhöht. Nach unseren Betrachtungen sehen wir nun, dass damit gleichermaßen auch die Systemenergie erhöht werden muss.

    Jedes System hat eine Energiespeichergrenze. Wird diese überschritten, so kann das System nicht mehr stabil existieren und es wird zerstört. Man spricht dann von einer Resonanzkatastrophe.

    Um einer solchen Resonanzkatastrophe vorzubeugen, werden reale Systeme gedämpft.

    Durch die Dämpfung eines Systems wird die gespeicherte Systemenergie dissipiert, das heißt, diese wird umgewandelt von einer Schwingung in Wärmeenergie.

    Du kannst dir diesen Effekt gewissermaßen mit der Reibung erklären.

    Wird ein Auto zu schnell, also die kinetische Systemenergie so groß, dass eine Katastrophe droht, tritt man auf die Bremse, um so durch Reibung die Systemenergie zu verringern und einer Katastrophe vorzubeugen.

    Um ein System unter Kontrolle zu halten, ist es also notwendig, die Systemenergie zu begrenzen und im Notfall eine Bremse zu haben. Außerdem ist es hilfreich, die Masse eines Systems zu verringern, damit kein zu großer Energieeintrag stattfinden kann.

  • Berechne die Dämpfungswerte.

    Tipps

    Der Dämpfungsbeiwert $\delta$ gibt an, wie die Energie einer Schwingung von der Masse$m$ und der Dämpfungskonstante $\beta$ abhängt.

    Der Wert von $\delta$ ist also für große Massen gering und für kleine Massen sehr groß.

    $\delta = \frac{\beta}{2m}$

    Lösung

    Der Dämpfungsbeiwert $\delta$ gibt an, wie die Energie einer Schwingung von der Masse$m$ und der Dämpfungskonstante $\beta$ abhängt.

    Dabei gilt:

    $\delta = \frac {\beta}{2m}$ .

    Der Wert von $\delta$ ist also für große Massen gering und für kleine Massen sehr groß.

    Die Dämpfungskonstante kannst du als eine spezielle Form der Federkonstante verstehen, also eine Art Kennwert für die Schwingungseigenschaften des Oszillators.

    Hat ein Oszillator sehr starke Dämpfungseigenschaften, so sind die Werte für die *Dämpfungskonstante $\beta$ groß. Ist die Dämpfungseigenschaft gering, ist auch der Wert von $\beta$ gering.

    Im Beispiel betrachten wir stets den gleichen Oszillator, darum ist die Konstante $\beta$ unveränderlich.

    Für eine Masse von $200g$ berechnet man $\delta$ dann mit :

    $\delta = \frac{\beta}{2m} = \frac{0,22}{2 \cdot 0,2} = 0,55$.

  • Gib an, in welchen Fällen eine Resonanzkatastrophe auftreten kann.

    Tipps

    Resonanz tritt immer dort auf, wo viele gleichmäßige Impulse auf einen schwingfähigen Körper wirken.

    Damit in Oszillator-Systemen Resonanz auftreten kann, muss diesem Energie mit Eigenfrequenz zugeführt werden.

    Lösung

    Resonanz tritt immer dort auf, wo viele gleichmäßige Impulse auf einen schwingfähigen Körper wirken.

    Da eine Resonanzkatastrophe nur dann für den Menschen relevant ist, wenn diese wirklich zur Gefahr werden kann, betrachten wir nur ausreichend große Oszillatoren: Brücken.

    Brücken haben aufgrund ihrer Lagerung an den Ufern eines Flusses die Eigenschaft, schwingfähig zu sein.

    Damit bei diesem großen, schwingfähigen System nun Resonanz auftreten kann, muss diesem Energie mit Eigenfrequenz zugeführt werden.

    Dies kann etwa auftreten, wenn Soldaten im Gleichschritt über eine Brücke marschieren oder wenn eine Brücke stets starkem Wind ausgesetzt ist.

    In beiden Fällen wird die Amplitude der Schwingung immer weiter erhöht, sodass die Gefahr besteht, dass System energetisch zu übersättigen und somit zu zerstören.

    Es gibt auch noch weitere Beispiele für große Oszillatoren im Alltag. Etwa kann die Spitze eines Wolkenkratzers mehrere Meter hin- und herschwingen, jedoch sind diese meiste weniger anfällig für Resonanz als die beschriebenen Brückenbauwerke.

  • Analysiere den Fall der Tacona Narrows Bridge.

    Tipps

    Die Tacona Narrows Bridge ist ein Beispiel für eine Resonanzkatastrophe an einem realen Bauwerk.

    Durch Turbulenzen der Windströmung wurden die Amplituden der Schwingungen der Brücke immer größer.

    Letztendlich führten Torsionsschwingungen zum Versagen der Brücke.

    Lösung

    Die Tacona Narrows Bridge zeigt ein Beispiel für eine Resonanzkatastrophe an einem realen Bauwerk.

    Durch Turbulenzen der Windströmung wurden die Amplituden der Schwingungen der Brücke immer größer. Es trat also Resonanz auf.

    Zunächst wurde die Brücke zu einem Touristenmagneten, da diese sich im Wind zu bewegen schien, als wäre sie aus Papier gebaut.

    Jedoch bemerkte man schnell, dass diese Brücke keineswegs eine Touristenattraktion, sondern vielmehr eine Gefahr für die Allgemeinheit war.

    Da neben den longitudinalen Schwingungen mit der Zeit auch mehr und mehr Torsionsbewegungen, also Drehbewegungen, der Brücke wahrnehmbar waren, schien deren Einsturz nur eine Frage der Zeit zu sein.

    Schlussendlich stürzte die Brücke aufgrund der großen Belastungen in einer Resonanzkatastrophe nur wenige Monate nach ihrer Fertigstellung zusammen.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.156

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.930

Lernvideos

37.078

Übungen

34.333

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden