Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Mechanische Schwingungen – Darstellung im Diagramm

Alle Inhalte sind von Lehrkräften & Lernexperten erstellt
Alle Inhalte sind von Lehrkräften & Lernexperten erstellt
Inhaltsverzeichnis zum Thema Mechanische Schwingungen – Darstellung im Diagramm
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.8 / 40 Bewertungen
Die Autor*innen
Avatar
Physik-Team
Mechanische Schwingungen – Darstellung im Diagramm
lernst du in der 9. Klasse - 10. Klasse - 11. Klasse

Mechanische Schwingungen – Darstellung im Diagramm Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Mechanische Schwingungen – Darstellung im Diagramm kannst du es wiederholen und üben.
  • Nenne die Definition einer mechanischen Schwingung.

    Tipps

    Stelle dir ein Fadenpendel oder eine Schaukel vor.

    Lösung

    In der Mechanik spricht man von einer Schwingung, wenn eine Bewegung um eine Ruhelage immer wieder abläuft, diese also periodisch ist.

    Eine komplette Schwingung (Periode) ist dabei zum Beispiel die Bewegung vom Umkehrpunkt zurück zum gleichen Umkehrpunkt oder auch die Bewegung von einem beliebigen Punkt, wie zum Beispiel der Ruhelage, bis zum nächsten Durchlaufen dieses Punktes in derselben Richtung.

  • Beschreibe das t-y-Diagramm, indem du die jeweilige Kenngröße benennst.

    Tipps

    Stelle dir als schwingenden Körper zum Beispiel ein Fadenpendel vor.

    Lösung

    Im ersten und dritten Diagramm siehst du, dass Auslenkungen zu einem bestimmten Zeitpunkt t eingezeichnet sind.
    Die maximale Auslenkung wird Amplitude genannt und ist bei einem Pendel die Entfernung von der Ruhelage bis zum Umkehrpunkt.
    Im zweiten Diagramm ist eine Periode eingezeichnet. Diese steht in unserem Fall für die Periodendauer, da auf der x-Achse t-Werte aufgetragen sind.
    Im vierten Diagramm ist die Größe hervorgehoben, die wir auf der x-Achse aufgetragen haben. Das ist die Zeit t, die wir messen.

  • Bestimme das t-y-Diagramm, das die Schwingung beschreibt.

    Tipps

    Überlege dir, wo das Federpendel seine Schwingung beginnt.

    Alle Diagramme zeigen eine Sinuskurve, die zum Teil verschoben ist.

    Lösung

    Das Federpendel wird zum Schwingen gebracht, indem es aus der Ruhelage nach oben bewegt wird. Nach oben bedeutet in positive y-Richtung.

    Wenn wir die Masse loslassen und mit der Zeitmessung beginnen, befindet sich die Masse nicht bei $y = 0$ sondern bei $y=y_{max}$. danach bewegt es sich nach unten durch die Ruhelage bis zum Umkehrpunkt und kehrt zurück zum Anfangspunkt. Die Bewegung können wir in dem Fall also durch eine verschobene Sinuskurve oder auch durch eine nicht verschobene Kosinusfunktion beschreiben.

  • Bewerte, welche Objekte harmonisch und welche nicht harmonisch schwingen.

    Tipps

    Eine harmonische Schwingung lässt sich durch eine sinusförmige Funktion beschreiben.

    In der Akustik unterscheidet man zwischen Ton, Klang und Geräusch.

    Lösung

    Um herauszufinden, ob ein Körper harmonisch schwingt, müssen wir feststellen, ob seine Schwingung durch eine Sinuskurve darstellbar ist.

    Bei den Gegenständen, die Zeit oder Takt angeben sollen, also Metronom und Pendeluhr, ist klar, dass sie genauso wie das untersuchte Federpendel eine feste Periodendauer haben und ihre Auslenkung einer Sinuskurve folgt.

    Auch ein Presslufthammer führt eine sinusförmige Bewegung aus.

    Wie sieht das ganze beim Trampolin aus? Beim Springen auf dem Trampolin bewegt sich weder der Mensch gleichmäßig auf und ab, noch vollführt das Trampolin selbst eine gleichmäßige Sinusschwingung. Es gibt zum Beispiel immer wieder Pausen, während sich der Springer in der Luft befindet, in denen sich das Trampolin gar nicht bewegt.

    Noch schwerer ist es, die akustischen Signale zu untersuchen, da wir sie nicht sehen. Die Unterteilung der Akustik in Ton, Klang und Geräusch ist dabei hilfreich.

    Ein reiner Ton, wie der einer Stimmgabel, kommt von einer sinusförmigen Schwingung. Diese Schwingung könnten wir übrigens auch sichtbar machen, indem wir die Stimmgabel leicht in ein Gefäß mit Wasser tauchen.

    Klänge sind zwar periodische Schwingungen, aber nicht sinusförmig. Geräusche sind nicht periodisch.

    Somit sind nur Töne, aber nicht Klänge oder Geräusche von harmonischen Schwingungen erzeugt.

  • Ordne den Größen einer Schwingung ihre Einheit zu.

    Tipps

    Überlege dir zuerst, wofür die Größen stehen.

    In welcher Einheit kann man die jeweilige Größe überhaupt messen?

    Lösung

    Die Auslenkung eines Pendels tragen wir auf der y-Achse auf. Daher nehmen wir einfach den Buchstaben y als Größe für die momentane Auslenkung des Pendels, die in Metern m angegeben wird. $y_{max}$ ist die maximale Auslenkung des Pendels und hat natürlich auch die Einheit m. Wir können auch die Dauer für eine komplette Schwingung messen. Diese nennen wir T und wir messen sie in der Regel in Sekunden s. Die Frequenz ist der Kehrwert 1/T und wird entweder in 1/s oder in Hz angegeben.

  • Stelle fest, ob sich die Frequenz eines Pendels ändert, wenn man die Amplitude ändert.

    Tipps

    Probiere es doch einfach mal aus: Baue dir ein Fadenpendel aus einem Faden und einem Gewicht zusammen und teste, was passiert, wenn du die Auslenkung, die das Pendel im Moment des Loslassens besitzt, veränderst.

    Die Frequenz ist der Kehrwert der Periodendauer T.

    Stelle dir eine Pendeluhr vor.

    Lösung

    Eine Pendeluhr könnte ihren Zweck nicht erfüllen, wenn sich die Periodendauer ändert, sobald das Pendel eine andere maximale Auslenkung hat.

    Die Periodendauer und somit auch die Frequenz müssen also unabhängig von der Amplitude sein.

    Du kannst es auch sehr einfach mit einem Fadenpendel ausprobieren: Baue dir ein Fadenpendel aus einem Faden und einem Gewicht zusammen und teste, was passiert, wenn du die Auslenkung, die das Pendel im Moment des Loslassens besitzt, veränderst. Miss dafür jeweils die Zeit für eine komplette Periode.

    Du wirst sehen, dass sich das Pendel bei kleineren Auslenkungen einfach langsamer bewegt und somit immer die gleiche Zeit benötigt, um eine Periode auszuführen.

    Nun kürze den Faden und miss die Periodendauer noch einmal. Was fällt dir auf?