Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Gravitationsfeld

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.0 / 15 Bewertungen
Die Autor*innen
Avatar
Jakob Köbner
Gravitationsfeld
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Gravitationsfeld Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Gravitationsfeld kannst du es wiederholen und üben.
  • Tipps

    Welche Eigenschaft von Körpern spielt beim Thema Gravitation die zentrale Rolle?

    Wann tritt in einem Gravitationsfeld tatsächlich eine Gravitationskraft auf?

    Welche Funktion haben Feldlinienbilder allgemein in der Physik?

    Lösung

    Gravitation ist an eine Eigenschaft von Körpern gebunden, die uns sehr selbstverständlich ist: ihre Masse. Jeder Körper erzeugt aufgrund seiner Masse ein Gravitationsfeld. Die Felder kleiner Massen, so wie unserer eigenen, sind natürlich deutlich schwächer als die Felder großer Massen wie der von Planeten.

    Gerät ein Körper mit seiner Masse in das Gravitationsfeld eines anderen Körpers, wirkt auf ihn eine Gravitationskraft. Diese Kraft verursacht eine Beschleunigung dieses Körpers, solange keine anderen Kräfte auftreten, die diese Wirkung kompensieren.

    Gravitationsfelder sind wie andere Felder in der Physik (elektrische Felder, magnetische Felder) nicht sichtbar. Man erkennt sie nur daran, wie sie auf andere Körper mit den passenden Eigenschaften wirken. Um ihre Eigenschaften dennoch darstellen zu können, wird die Feldlinienmethode verwendet. Anhand der Feldlinien lässt sich erkennen, in welche Richtung beispielsweise die Gravitationskraft auf einen leichten Körper im Gravitationsfeld eines deutlich schwereren Körpers wirkt.

  • Tipps

    Alle Größen sind hier erst mal ohne Vektorpfeile geschrieben.

    Vorsicht: Gravitationsfeldstärke und Gravitationskonstante kann man wegen ihres ähnlichen Namens und ihres ähnlichen Formelzeichens schnell verwechseln.

    Lösung

    Fügt man den vektoriellen Charakter bei den entsprechenden Größen noch mit ein, ergeben sich die Formeln wie folgt: $\vec g=\frac {\vec {F_G}} {m}=\frac {G\cdot M} {r^2} \cdot \vec {e_r}$.

    Die Gravitationsfeldstärke $\vec g$ ist die feldbeschreibende Größe für das Gravitationsfeld. Sie ist eine vektorielle Größe und kann für jeden Punkt in einem Gravitationsfeld einzeln berechnet werden. Die Gravitationskonstante $G$ hingegen ist eine Naturkonstante, die immer einen festen Wert besitzt.

  • Tipps

    Die Darstellung mit Feldlinien ist ein Modell, um sich Gravitationsfelder besser vorstellen zu können.

    Lösung

    Physikalische Felder sind unsichtbar. Sie werden daher durch Linien dargestellt, die jeweils mit einem Pfeil versehen sind. Die Linien sind hier grün eingezeichnet, der felderzeugende Körper ist durch den grauen Kreis in der Mitte dargestellt. Um die Art des Feldes anzuzeigen, wird es mit der feldbeschreibenden Größe (hier Gravitationsfeldstärke $\vec g$) beschriftet.

    Die Richtung der Feldlinien gibt die Richtung an, in die die Gravitationswirkung des felderzeugenden Körpers einen weiteren Körper beschleunigen würde. Das trifft auf alle Punkte im Gravitationsfeld zu, aus Übersichtlichkeit werden aber nur einige Feldlinien gezeichnet. Der Raum zwischen den Feldlinien weist jedoch dieselben Eigenschaften auf.

    Das gezeigte Gravitationsfeld ist das Radialfeld eines kugelsymmetrischen Körpers zum Beispiel eines Planeten. Das erkennt man daran, dass die Feldlinien symmetrisch in Richtung Kreiszentrum verlaufen und sich dort theoretisch schneiden würden. Bei homogenen Feldern hingegen verlaufen die Feldlinien parallel.

  • Tipps

    Nicht alle Werte musst du berechnen: $g_1$ entspricht dem Radius der Erde, $r_4$ erschließt sich aus der Abbildung.

    Verwende die Formel zur Berechnung der Gravitationsfeldstärke $g$, um $g_2$ und $g_3$ zu bestimmen.

    Lösung

    Gezeigt ist die Rechnung am Beispiel für den Erdradius $r_1$. Analog berechnen sich die anderen Werte für die Gravitationsfeldstärke in verschiedenen Höhen der Erde.

    Wie du an den Werten siehst, nimmt g relativ schnell ab, je weiter der Punkt von der Erdoberfläche entfernt ist. Bei einem Abstand vom doppelten Erdradius beträgt g nur rund ein Viertel des Wertes auf der Erdoberfläche.

  • Tipps

    Bei den fehlerhaften Formeln können Zähler und Nenner vertauscht sein, Exponenten einen falschen Wert tragen oder einzelne Größen falsch sein.

    Lösung

    In der Definitionsgleichung der Gravitationsfeldstärke $g=\frac {F_G} {m}$ wird die Masse m des Körpers, auf den die Kraft im Gravitationsfeld wirkt, durch Teilen herausgekürzt.

    In der daraus abgeleiteten Formel zur Berechnung von $g=\frac {G\cdot M} {r^2}$ taucht sie daher nicht mehr auf. Um die Gravitationsfeldstärke in einem Punkt anzugeben, ist daher nur noch die Masse M des felderzeugenden Körpers relevant. Mit Hilfe von M, der Gravitationskonstante G und der Lage des Punktes im Gravitationsfeld (Abstand r zum Quadrat im Nenner) kann die Gravitationsfeldstärke bestimmt werden.

  • Tipps

    Das Gravitationsfeld soll nur mit Eigenschaften beschrieben werden, die der felderzeugende Körper besitzt.

    Lösung

    Feldbeschreibende Größen vernachlässigen immer die wesentliche Eigenschaft ihres Probekörpers, die für die Kraftwirkung verantwortlich ist.

    Beim Gravitationsfeld ist dies die Masse des Probekörpers, man erhält die Gravitationsfeldstärke g. Beim elektrischen Feld beispielsweise ist dies die Ladung des Probekörpers, man erhält die elektrische Feldstärke E.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.360

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.212

Lernvideos

38.688

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden

Pommes der Pinguin hält einen großen gelben Stern in den Händen
Pommes der Pinguin hält einen großen gelben Stern in den Händen
30 Tage kostenlos testen
30 Tage kostenlos testen
Über 1,6 Millionen Schüler*innen nutzen sofatutor Über 1,6 Millionen Schüler*innen nutzen sofatutor
Lernpakete anzeigen
Lernpakete anzeigen
Lernpakete anzeigen