Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Steigung in einem Punkt

Erfahre, wie du mit dem Differenzenquotienten die Steigung in einem Punkt annäherungsweise berechnen kannst. Du wirst lernen, dass eine präzisere Näherung durch die Verkleinerung des Parameters $h$ erreicht wird. Interessiert? Dies und Übungsaufgaben erwarten dich im nächsten Abschnitt!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.9 / 38 Bewertungen
Die Autor*innen
Avatar
Mathe-Team
Steigung in einem Punkt
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Steigung in einem Punkt Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Steigung in einem Punkt kannst du es wiederholen und üben.
  • Beschreibe den Weg von der Sekante zur Tangente.

    Tipps

    Wenn eine Gerade ein Objekt in zwei Punkten schneidet, wie wird diese Gerade dann genannt?

    Liegt lediglich ein Berührpunkt vor, wird die Gerade Tangente genannt.

    Lösung

    Die durchschnittliche Steigung zwischen zwei Punkten x$_0$ und x kann man gut mit Hilfe der Sekante durch die Punkte f$($x$_0$$)$ und f$($x$)$ und einem entsprechenden Steigungsdreieck bestimmen. Der Differenzenquotient gibt die Steigung D = $\frac{f(x)-f(x_0)}{x-x_0}$ an.

    Nun ist es aber interessant nicht nur die durchschnittliche Steigung zwischen zwei Punkten zu kennen, sondern auch die Steigung in einem Punkt. Dafür ändern wir den Differenzenquotienten ein bisschen ab. Unser Ziel ist es, dass x$_0$ und x sehr nahe nebeneinander liegen. Wir können die Differenz zwischen x$_0$ und x mit h beschreiben und dann nach x umstellen, sodass x = x$_0$ + h.

    Dies setzen wir nun in unseren leicht angepassten Differenzenquotieten ein:

    D = $\frac{f(x_0+h)-f(x_0)}{h}$.

  • Untersuche die Steigung der Funktion $f(x) = x^3$ im Punkt $P (1|1)$ näherungsweise.

    Tipps

    Wähle erst große $h$, um zu beobachten, wie unser Ergebnis genauer wird, je kleiner $h$ ist.

    Der Differenzenquotienten $D$ lautet $\frac{f(x_0+h)-f(x_0)}{h}$.

    Lösung

    Mit dem von uns angepassten Differenzenquotienten können wir ziemlich genaue Angaben über die Steigung in einem Punkt machen. Unsere Funktion lautet hier $f(x) = x^3$ und wir wollen möglichst genau die Steigung im Punkt $P (1|1)$ bestimmen.

    Wir erinnern uns, dass h den Abstand zwischen zwei Punkten $x_0$ und $x$ bestimmt. Da die Sekante durch zwei Punkte einer Tangente ähnelt, wenn diese sehr nahe beieinander sind, wählen wir h einfach möglichst klein.

    $h = 0,01$ ist da eigentlich schon gut gewählt. Es liefert uns eine ziemlich gute Näherung der Steigung, indem wir es in den Differenzenquotienten $D = \frac{f(x_0+h)-f(x_0)}{h}$ einsetzen.

    In unserem Fall lautet er dann:

    $D = \frac{f(1+0,01)-f(1)}{0,01} = \frac{1,01^3-1^3}{0,01} = 3,0301$.

    Das kommt der tatsächlichen Steigung von $3$ schon sehr nahe. Je kleiner wir $h$ wählen, desto genauer ist unser Differenzenquotient.

  • Bestimme die durchschnittliche Steigung und die maximale Steigung der Sprungschanze.

    Tipps

    Wir wollen zunächst die Steigung eines Steigungsdreiecks, dann die Steigung im Punkt $R$ berechnen.

    Benutze den Differenzenquotienten und verwende für die Steigung im Punkt $R$ ein möglichst kleines $h$.

    Lösung

    Die Skisprungschanze lässt sich durch die Funktion $f(x) = 2x^2$ beschreiben. Die Startposition ist im Punkt $R (4|32)$.

    Wenn wir nun eine Sekante durch die Punkte $Q$ und $R$ zeichnen, ergibt sich die Hypotenuse eines Steigungsdreieck. Wir können mit dem Differenzenquotienten die durchschnittliche Steigung $D = \frac{f(x)-f(x_0)}{x-x_0}$ berechnen. Dabei ist $x_0 = 0$ und $x = 4$. Es ergibt sich $D = \frac{2 \cdot 4^2-2 \cdot 0^2}{4-0} = \frac{32}{4} = 8$.

    Wollen wir dagegen die genaue Steigung im Punkt $R (4|32)$ berechnen, so benutzen wir den angepassten Differenzenquotienten und wählen ein kleines $h$, wie $h = 0,01$. Dann haben wir:

    $D = \frac{f(4+0,01) - f(4)}{0,01} = \frac{2 \cdot 4,01^2 - 2 \cdot 4^2}{0,01} = \frac{0,1602}{0,01} = 16,02$.

    Das ist fast der genaue Wert für die Steigung im Punkt R. Runden wir ihn und wir erhalten - wie wir zu einem späteren Zeitpunkt beweisen können - den exakten Wert. Die Steigung beträgt im Punkt $R$ $16$.

  • Ordne den verschiedenen Funktionen die Steigung an der Stelle $x_0 = 3$ zu.

    Tipps

    Verwende den Differenzenquotienten $D = \frac{f(x_0+h)-f(x_0)}{h}$ mit möglichst kleinem $h$.

    Wähle $h = 0,01$ und runde das Ergebnis ab.

    Lösung

    Die Steigung an der Stelle $x_0 = 3$ der Funktion $f(x) = \frac{1}{3}x^3 + 2$ lässt sich berechnen, indem man die Stelle im Differenzenquotienten untersucht und ein kleines $h$ wählt, beispielsweise $h = 0,01$.

    $D = \frac{f(3+0,01)-f(3)}{0,01} = \frac{(\frac{1}{3} \cdot 3,01^3 + 2)-(\frac{1}{3} \cdot 3^3 + 2)}{0,01} \approx \frac{11,09030033 - 11}{0,01} = \frac{0,09030033}{0,01} = 9,030033$.

    Abgerundet liefert uns das die tatsächliche Steigung an der Stelle $x_0 = 3$. Sie liegt bei $9$.

  • Gib an, welche Aussagen über den Differenzenquotienten und die Steigung wahr sind.

    Tipps

    Die Begriffe "tangere" und "secare" kommen aus dem Lateinischen und bedeuten "berühren" und "schneiden".

    Lösung

    Mittels der Sekante, welcher die Funktion an zwei Punkten schneidet, haben wir bisher ein Steigungsdreieck zeichnen und den Differenzenquotienten berechnen können. Allerdings hat dieser Differenzenquotient uns nur die durchschnittliche Steigung zwischen zwei Punkten auf der Funktion angezeigt.

    Wir haben aber festgestellt, dass wir einen ziemlich genauen Wert für die Steigung berechnen können, wenn wir den Abstand zwischen x$_0$ und x klein werden lassen. Je näher x$_0$ und x nebeneinander liegen, desto mehr ähnelt die Sekante einer Tangente, welche den Funktionsgraphen nur berührt. So lässt sich die Steigung in einem Punkt ziemlich genau berechnen.

  • Bestimme die Stelle x$_0$ des Funktionsgraphen f$($x$)$ = x$^2$, an der der Graph die Steigung 6 hat.

    Tipps

    Wähle h = 0,01, um einen möglichst präzisen Wert zu erhalten.

    Setze D = 6 und löse den Differenzenquotienten nach x auf.

    Lösung

    Hier ist die Steigung vorgegeben. Sie beträgt 6 und wir suchen die Stelle x$_0$ der Funktion f$($x$)$ = x$^2$, wo diese Steigung existiert.

    Dafür müssen wir unser bisheriges Procedere lediglich ein wenig ändern. Die Lage ist dieses Mal folgende, dass D = 6 gegeben ist und wir x$_0$ suchen. Wählen wir wiederum h = 0,01.

    Dann ergibt sich:

    D = 6 = $\frac{(x + 0,01)^2 - x^2}{0,01}$ = $\frac{x^2 + 0,02x + 0,0001 - x^2}{0,01}$ = $\frac{0,02x + 0,0001}{0,01}$ = 2x + 0,01.

    Subtrahieren wir nun auf beiden Seiten der Gleichung 0,01, ergibt sich 5,99 = 2x und somit x $\approx$ 3.