Über 1,2 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Klassenarbeiten vorbereiten

Mehrstufige Zufallsexperimente

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.3 / 7 Bewertungen
Die Autor*innen
Avatar
Team Digital
Mehrstufige Zufallsexperimente
lernst du in der 7. Klasse - 8. Klasse

Grundlagen zum Thema Mehrstufige Zufallsexperimente

Einführung: mehrstufige Zufallsexperimente

Sicherlich hast du schon einmal an einem Glücksrad gedreht. Manchmal kann man dabei sogar Dinge gewinnen! Wenn du mehrmals an einem Glücksrad drehst und die Kombination der Ergebnisse für einen Gewinn entscheidend ist, so spricht man von einem mehrstufigen Zufallsexperiment oder einem mehrstufigen Zufallsversuch. Was das Glücksrad mit mehrstufigen Zufallsversuchen zu tun hat, wirst du später in diesem Text und am Ende des Videos erfahren.

Zufallsexperimente

Bei einem Zufallsexperiment sind alle möglichen Ausgänge bekannt. Außerdem ist der Versuch beliebig oft unter den gleichen Bedingungen wiederholbar.

Der Münzwurf ist ein Beispiel für ein Zufallsexperiment. Die möglichen Ausgänge sind Kopf ($K$) und Zahl ($Z$). Wir können daher die Ergebnismenge wie folgt notieren:

$E=\lbrace K; Z \rbrace$

Definition eines mehrstufigen Zufallsexperiments

Wir kennen nun Zufallsexperimente. Aber was ist ein mehrstufiges Zufallsexperiment?

Wenn wir einen Zufallsversuch mehrfach durchführen und die Ergebnismengen der einzelnen Versuche zusammenfassen, so sprechen wir von einem mehrstufigen Zufallsexperiment.

Aufgaben zu mehrstufigen Zufallsexperimenten enthalten häufig das Formulieren der Ergebnismenge. Wir schauen uns dazu nun einige Beispiele an.

Beispiele zu mehrstufigen Zufallsexperimenten

Zweistufige Zufallsexperimente

Wenn wir eine Münze zweimal hintereinander werfen, so können wir die Ergebnismenge dieses zweistufigen Zufallsexperiments wie folgt aufschreiben:

$E=\lbrace (K;K); (K;Z); (Z;K); (Z;Z) \rbrace$

Die Ergebnismenge des zweistufigen Zufallsversuchs besteht aus Paaren. Es handelt sich hierbei um geordnete Paare, denn das Ergebnis $(K;Z)$ unterscheidet sich vom Ergebnis $(Z;K)$.

Wir können auch das zweifache Werfen eines Würfels als zweistufiges Zufallsexperiment auffassen. Die Ergebnismenge enthält dann $6\cdot 6=36$ Paare. Dabei kann jedes der sechs möglichen Ergebnisse des ersten Wurfs mit jedem der sechs möglichen Ergebnisse des zweiten Wurfs kombiniert werden.

Dreistufige Zufallsexperimente

Wenn wir eine Münze dreimal hintereinander werfen, so können wir die Ergebnismenge dieses dreistufigen Zufallsexperiments wie folgt aufschreiben:

$E=\lbrace (K;K;K); (K;K;Z); (K;Z;K); (Z;K;K); (Z;Z;K);$$ (Z;K;Z); (K;Z;Z;); (Z;Z;Z) \rbrace$

Die Ergebnismenge des dreistufigen Zufallsversuchs besteht aus sogenannten Tripeln. Auch hierbei ist die Reihenfolge zu beachten.

Wir können auch das dreifache Werfen eines Würfels als dreistufiges Zufallsexperiment auffassen. Die Ergebnismenge enthält dann $6 \cdot 6 \cdot 6 = 216$ Tripel.

Zusammenfassung: mehrstufige Zufallsexperimente

Die folgenden Stichpunkte fassen noch einmal das Wichtigste über die mehrstufigen Zufallsexperimente zusammen:

  • Bei einem Zufallsexperiment sind alle möglichen Ausgänge bekannt und der Versuch ist beliebig oft wiederholbar.
  • Wenn wir einen Zufallsversuch mehrmals durchführen und die Ergebnismengen der einzelnen Versuche zusammenfassen, so sprechen wir von einem mehrstufigen Zufallsexperiment.
  • Wenn wir z. B. eine Münze zweimal hintereinander werfen, so können wir die Ergebnismenge dieses zweistufigen Zufallsexperiments wie folgt aufschreiben:
    $E=\lbrace (K;K); (K;Z); (Z;K); (Z;Z) \rbrace$

Wenn du dies ausreichend geübt hast, kannst du lernen, wie man mehrstufige Zufallsexperimente durch ein Baumdiagramm veranschaulichen kann. Dann lernst du auch Wahrscheinlichkeitsrechnung zu mehrstufigen Zufallsexperimenten, indem du die Pfadregel und die Produktregel zu mehrstufigen Zufallsexperimenten kennenlernst.

Hier bei sofatutor findest du auch Arbeitsblätter und interaktive Übungen zum Thema mehrstufige Zufallsexperimente.

Häufig gestellte Fragen zum Thema mehrstufige Zufallsexperimente

Was sind mehrstufige Zufallsexperimente?
Welche Eigenschaften können mehrstufige Zufallsexperimente haben?
Welche Arten von mehrstufigen Zufallsexperimenten gibt es?
Wozu braucht man mehrstufige Zufallsexperimente?
Wie berechnet man mehrstufige Zufallsexperimente?
1 Kommentar
1 Kommentar
  1. tolles Video

    Von Linus, vor 9 Tagen

Mehrstufige Zufallsexperimente Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Mehrstufige Zufallsexperimente kannst du es wiederholen und üben.
  • Beschreibe die Ergebnismenge beim mehrfachen Münzwurf.

    Tipps

    Die Ergebnismenge beim zweifachen Münzwurf beinhaltet Tupel, das sind geordnete Paare.

    $(Z, Z, Z,K)$ ist ein Element einer Ergebnismenge eines vierstufigen Zufallsexperimentes.

    Lösung

    Der Münzwurf ist ein Zufallsexperiment, für das gilt:

    • alle möglichen Ergebnisse sind bekannt
    • das Ergebnis lässt sich nicht vorhersagen
    • das Experiment ist unter den gleichen Bedingungen wiederholbar

    Die möglichen Ergebnisse beim Münzwurf sind Kopf $(K)$ und Zahl $(Z)$. Die Ergebnismenge des einfachen Münzwurfes schreiben wir dann wie folgt:
    $\Omega =\{K, Z\}$

    Wir können dieses Experiment einmal oder mehrfach durchführen. Wiederholen wir es mehrfach, so sprechen wir vom mehrstufigen Zufallsexperiment. Jede Wiederholung des Experimentes entspricht dann einer Stufe.

    Wird die Münze zweimal geworfen, so lautet die Ergebnismenge des zweistufigen Zufallsexperimentes:
    $\Omega = \{ (K, Z), (Z, Z), (K, K), (Z, K) \}$
    Die Ergebnismenge beinhaltet in diesem Fall sogenannte Tupel, die wir in Klammern setzten.

    Wird die Münze dreimal geworfen, so lautet die Ergebnismenge des dreistufigen Zufallsexperimentes:
    $\Omega = \{ (Z, Z, Z), (Z, Z, K), (Z, K, Z), (K, Z, Z), (K, K, Z), (K, Z, K), (Z, K, K), (K, K, K)\}$
    Die Ergebnismenge besteht in diesem Fall aus sogenannten Tripeln.

  • Gib an, welche Aussagen zu mehrstufigen Zufallsexperimenten richtig sind.

    Tipps

    $(3,4)$ ist ein Tupel.

    Lösung

    Wir sprechen in der Mathematik von einem Zufallsexperiment, wenn folgende Bedingungen erfüllt sind:

    • Alle möglichen Ergebnisse sind bekannt.
    • Das Ergebnis lässt sich nicht vorhersagen.
    • Das Experiment ist unter den gleichen Bedingungen wiederholbar.

    Die Aussage „Bei einem Zufallsexperiment sind alle möglichen Ergebnisse bekannt.“ ist also richtig.

    Der Münzwurf ist ein Beispiel eines solchen Zufallsexperiments. Alle möglichen Ergebnisse eines Zufallsexperiments werden in der sogenannten Ergebnismenge $\Omega$ zusammengefasst. Die möglichen Ergebnisse beim Münzwurf sind Kopf $(K)$ und Zahl $(Z)$. Die Ergebnismenge des einfachen Münzwurfes lautet dann wie folgt:
    $\Omega =\{(K, Z)\}$

    Die Aussage „Die Ergebnismenge gibt das eingetretene Ergebnis an.“ ist falsch, denn die Ergebnismenge $\Omega$ beinhaltet alle möglichen Ergebnisse, nicht nur das eingetretene Ergebnis.

    Wiederholen wir ein Zufallsexperiment mehrfach, so sprechen wir vom mehrstufigen Zufallsexperiment. Wird die Münze beispielsweise zweimal geworfen, so enthält die Ergebnismenge geordnete Paare mit dem Ausgang des ersten und zweiten Wurfs, sogenannte Tupel.

    Die Aussage „Ein Tupel ist ein geordnetes Paar.“ ist richtig.

    Beim zweifachen Münzwurf ist ein mögliches Tupel $(K, Z)$. Es unterscheidet sich von dem Tupel $(Z, K)$.

    Die Aussage „In der Ergebnismenge eines mehrstufigen Zufallsexperimentes berücksichtigen wir nicht die Reihenfolge der Einzelergebnisse.“ ist demnach falsch. Es wird sehr wohl zwischen Tupeln mit verschiedener Reihenfolge unterschieden.

    Wird die Münze dreimal geworfen, so beinhaltet die Ergebnismenge sogenannte Tripel.

    Die Aussage „Die Ergebnismenge eines dreistufigen Zufallsexperimentes beinhaltet Tripel.“ ist also richtig.

    Je höher die Anzahl der Stufen eines mehrstufigen Zufallsexperimentes sind, umso mehr Elemente sind in der Ergebnismenge enthalten.“ Diese Aussage ist ebenfalls richtig, da jeder Ausgang in der neuen Stufe mit allen Möglichkeiten der vorherigen Stufe kombiniert werden kann.

  • Untersuche das mehrfache Ziehen aus einem Kartenspiel.

    Tipps

    Um die Anzahl der Tupel in der Ergebnismenge zu bestimmen, musst du jedes mögliche Ergebnis des ersten Zuges mit jedem möglichen Ergebnis des zweiten Zuges kombinieren.

    Ist die Reihenfolge der gezogenen Karten nicht relevant, so können Ergebnisse zusammengefasst werden. Beispielsweise sind Karo-Kreuz und Kreuz-Karo dasselbe Ergebnis, wenn die Reihenfolge nicht mehr berücksichtigt wird.

    Lösung

    Das Ziehen einer Karte aus dem Stapel ist ein Zufallsexperiment, bei dem es $4$ mögliche Ausgänge gibt, nämlich Karo, Herz, Kreuz und Pik.

    Wird das Zufallsexperiment zweimal hintereinander ausgeführt, so sind in der Ergebnismenge $16$ Tupel enthalten. Dabei müssen wir jeden der möglichen Ausgänge mit einem anderem Ausgang kombinieren. Das entspricht dann $4 \cdot 4=16$ geordneten Paaren, welche wir Tupel nennen.
    $\Omega = \lbrace~$(Karo, Karo), (Karo, Herz), (Karo, Kreuz), (Karo, Pik), (Herz, Karo), (Herz, Herz), (Herz, Kreuz), (Herz, Pik), (Kreuz, Karo), (Kreuz, Herz), (Kreuz, Kreuz), (Kreuz, Pik), (Pik, Karo), (Pik, Herz), (Pik, Kreuz), (Pik, Pik)$~\rbrace$

    Ist die Reihenfolge der gezogenen Karten nicht relevant, so können Ergebnisse zusammengefasst werden. Beispielsweise sind Karo-Kreuz und Kreuz-Karo dasselbe Ergebnis, wenn die Reihenfolge nicht mehr berücksichtigt wird. Wir fassen die $12$ Tupel aus je zwei verschiedenen Karten zu $6$ Kombinationen ohne Reihenfolge zusammen:
    Karo-Herz, Karo-Kreuz, Karo-Pik, Herz-Kreuz, Herz-Pik und Kreuz-Pik.
    Hinzu kommen die vier Kombinationen mit zwei gleichen Karten:
    Karo-Karo, Herz-Herz, Kreuz-Kreuz und Pik-Pik.
    In diesem Fall unterscheiden wir also noch $10$ mögliche Ergebnisse.

    Wird das Zufallsexperiment dreimal hintereinander wiederholt, so sind in der Ergebnismenge $4 \cdot 4 \cdot 4 =64$ Tripel enthalten.

  • Bestimme die Ergebnismenge beim wiederholten Drehen des Glücksrades.

    Tipps

    In der Ergebnismenge dürfen nur die Farben auftauchen, die auch auf dem Glücksrad vorkommen.

    Lösung

    Das mehrfache Drehen eines Glücksrades ist ein Beispiel eines mehrstufigen Zufallsexperimentes. Um die Ergebnismenge eines solchen mehrstufigen Zufallsexperimentes zu ermitteln, müssen wir die möglichen Ergebnisse des einfachen Zufallsexperimentes (einmaliges Drehen des Glücksrades) miteinander kombinieren.

    Wir betrachten die beschriebenen Experimente:

    Ein Glücksrad mit den Farben rot, blau und gelb wird zweimal hintereinander gedreht.
    Wir müssen die beiden Ergebnismengen $\Omega_1 = \{r,b,g \}$ und $\Omega_2 = \{r,b,g \}$ miteinander kombinieren. Dabei müssen wir die Reihenfolge beachten, denn es ist ein Unterschied, ob zuerst rot und dann gelb: $(r,g)$ oder zuerst gelb und dann rot: $(g,r)$ getroffen wurde. Es ergibt sich die folgende Ergebnismenge:
    $\Omega = \{ (g,g), (g,r), (g,b), (r,r), (r,g), (r,b), (b,b), (b,r), (b,g) \}$

    Ein Glücksrad mit den Farben rot und blau wird zweimal hintereinander gedreht.
    Wir müssen die beiden Ergebnismengen $\Omega_1 = \{r,b \}$ und $\Omega_2 = \{r,b \}$ miteinander kombinieren. Wir beachten wieder die Reihenfolge und erhalten die folgende Ergebnismenge mit $4$ Tupeln:
    $\Omega = \{ (r,b), (b,r), (b,b), (r,r) \}$

    Ein Glücksrad mit den Farben rot und blau wird dreimal hintereinander gedreht.
    Wir müssen drei gleiche Ergebnismengen $\Omega_1 = \{r,b \}$, $\Omega_2 = \{r,b \}$ und $\Omega_3 = \{r,b \}$ miteinander kombinieren. Dabei entstehen Tripel, da es sich um ein dreistufiges Zufallsexperiment handelt:
    $\Omega = \{ (r,r,r), (r,r,b), (r,b,r), (b,r,r), (b,b,r), (b,r,b), (r,b,b), (b,b,b) \}$

    Ein Glücksrad mit den Farben rot und gelb wird dreimal hintereinander gedreht.
    Wir bilden die Ergebnismenge wie oben, nur mit der Farbe gelb anstatt blau. Das heißt, wir kombinieren wieder drei Ergebnismengen $\Omega_1 = \{r,g \}$, $\Omega_2 = \{r,g \}$ und $\Omega_3 = \{r,g \}$ miteinander:
    $\Omega = \{ (r,r,r), (r,r,g), (r,g,r), (g,r,r), (g,g,r), (g,r,g), (r,g,g), (g,g,g) \}$

  • Nenne zweistufige Zufallsexperimente.

    Tipps

    Stelle dir die Zufallsexperimente in ihrer zeitlichen Abfolge vor. Du kannst die einzelnen Stufen immer nacheinander durchführen.

    Beispiel:

    Werden drei Münzen geworfen, so handelt es sich um ein dreistufiges Zufallsexperiment.

    Lösung

    Ein Zufallsexperiment können wir einmal oder mehrfach durchführen. Wiederholen wir es mehrfach, so sprechen wir vom mehrstufigen Zufallsexperiment. Jede Wiederholung des Experimentes entspricht dann einer Stufe.

    Wir betrachten damit die gegebenen Experimente:

    Ein Würfel wird zweimal hintereinander geworfen.
    Das Experiment wird zweimal durchgeführt, es ist also zweistufig.

    Ein Glücksrad, welches rote und blaue Felder hat, wird dreimal hintereinander gedreht.
    Das Experiment wird zweimal durchgeführt, es ist dreistufig und damit nicht zweistufig.

    Zwei Münzen werden geworfen.
    Wir können uns vorstellen, dass die Münzen nacheinander geworfen werden. Das Experiment wird zweimal durchgeführt, es ist also zweistufig.

    Eine Münze wird viermal hintereinander geworfen.
    Das Experiment wird viermal durchgeführt, es ist demnach vierstufig und nicht zweistufig.

  • Beschreibe die Ergebnismenge eines mehrstufigen Zufallsexperiments.

    Tipps

    Um die richtigen Terme herzuleiten, kannst du dir jeweils ein Beispiel überlegen und dieses auf die allgemeinen Angaben übertragen.

    Wird eine Münze viermal hintereinander geworfen, so enthält die Ergebnismenge $2 \cdot 2 \cdot 2 \cdot 2 = 16$ Ergebnisse. Bei den Ergebnissen handelt es sich um $4$-Tupel. Die Wahrscheinlichkeit für jedes Ergebnis beträgt $\dfrac{1}{16}$.

    Lösung

    Wir wollen die Ergebnismenge bei einem mehrstufigen Zufallsexperiment allgemein mit Variablen beschreiben. Um die richtigen Terme herzuleiten, betrachten wir jeweils zunächst ein Beispiel:

    Beispiel: Eine Münze wird viermal hintereinander geworfen. Das Zufallsexperiment ist also vierstufig. Die Ergebnismenge enthält dann $2 \cdot 2 \cdot 2 \cdot 2 = 2^4 = 16$ Ergebnisse. Bei den Ergebnissen handelt es sich um $4$-Tupel.
    Allgemein gilt also: Wird ein Zufallsexperiment mit $a$ möglichen Ausgängen $b$ mal durchgeführt, so enthält die Ergebnismenge $a^b$ Elemente. Dies liegt daran, dass jedes Element einer Ergebnismenge mit $a$ Elementen $b$-mal mit jedem Element der gleichen Ergebnismenge kombiniert werden kann. Bei den Ergebnissen handelt es sich um $b$-Tupel, die für jede der $b$ Durchführungen einen Eintrag enthalten.

    Beispiel: Die Wahrscheinlichkeit für jedes Ergebnis beim vierfachen Münzwurf beträgt $\dfrac{1}{16}$.
    Allgemein gilt also: Die Wahrscheinlichkeit für jedes Ergebnis beim $b$-stufigen Zufallsexperiment, bei dem alle Ausgänge gleich wahrscheinlich sind, kann als $P= \dfrac{1}{a^b}$ berechnet werden.

    Beispiel: Wird das Münzexperiment ein weiteres Mal durchgeführt (also insgesamt fünf mal), so vergrößert sich die Anzahl der Elemente in der Ergebnismenge um den Faktor $2$ auf insgesamt $2^5=32$ Elemente.
    Allgemein gilt also: Wird das Experiment ein weiteres Mal durchgeführt, so vergrößert sich die Anzahl der Elemente in der Ergebnismenge um den Faktor $a$, da jedes Ergebnis der vorherigen Stufe erneut mit allen Ausgängen einer einfachen Durchführung kombiniert wird.