- Mathematik
- Terme und Gleichungen
- Lösungsmöglichkeiten quadratischer Gleichungen – Zusammenfassung
- Lösungswege für spezielle quadratische Gleichungen
Lösungswege für spezielle quadratische Gleichungen
Starte dafür schnell & einfach deine kostenlose Testphase
und verbessere mit Spaß deine Noten!
-
Lernvideos für alle Klassen und Fächer, die den Schulstoff kurz und prägnant erklären.
-
steigere dein Selbstvertrauen im Unterricht, indem du vor Tests und Klassenarbeiten mit unseren unterhaltsamen interaktiven Übungen lernst.
-
lerne unterwegs mit den Arbeitsblättern zum Ausdrucken – zusammen mit den dazugehörigen Videos ermöglichen diese Arbeitsblätter eine komplette Lerneinheit.
-
24h-Hilfe von Lehrer*innen, die immer helfen, wenn du es brauchst.
Testphase jederzeit online beenden
Sie sind Lehrkraft? Hier entlang!
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Das Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?
Quiz startenDu musst eingeloggt sein, um bewerten zu können.
Wow, Danke!
Gib uns doch auch deine Bewertung bei Google! Wir freuen uns!
Grundlagen zum Thema Lösungswege für spezielle quadratische Gleichungen
Nach dem Schauen dieses Videos wirst du in der Lage sein, quadratische Gleichungen, in denen das Absolutglied und/oder das lineare Glied Null ist, zu lösen.
Zunächst lernst du, wie du quadratische Gleichungen ohne Absolutglied löst. Anschließend werden quadratische Gleichungen ohne lineares Glied betrachtet. Abschließend lernst du, welche Lösung eine quadratische Gleichung besitzt, die weder über ein Absolutglied, noch ein lineares Glied verfügt.
Lerne etwas über das Lösen quadratischer Gleichungen.
Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie quadratische Gleichung, Lösung, Lösungsmenge, allgemeine Form, reinquadratische Form, Absolutglied und lineares Glied.
Bevor du dieses Video schaust, solltest du bereits wissen, was quadratische Gleichungen sind und in welchen Formen sie vorliegen können.
Nach diesem Video wirst du darauf vorbereitet sein, etwas über die bestimmung von Nullstellen einer quadratischen Funktion zu lernen.
Transkript Lösungswege für spezielle quadratische Gleichungen
Lina arbeitet seit 35 Jahren in der Abteilung für Gleichungen. Das Lösen quadratischer Gleichungen findet sie einfach himmlisch! Aber heute hat sie Gleichungen bekommen, die sehen irgendwie etwas anders aus. Bei denen fehlt doch was! Deshalb beschäftigt sich Lina mit den Lösungswegen für spezielle quadratische Gleichungen. Aber welche speziellen Gleichungen sind dabei gemeint? Dazu wiederholen wir zunächst, wie die allgemeine Form einer quadratischen Gleichung aussieht. Die Glieder im quadratischen Term heißen quadratisches Glied, lineares Glied und Absolutglied. Einzelne Quadratische Gleichungen unterscheiden sich durch die Koeffizienten dieser Glieder. Und die Koeffizienten führen daher auch auf die Lösungen dieser Gleichungen. Ist einer der Koeffizienten gleich Null, vereinfacht sich das Finden einer Lösung ganz erheblich. Der Koeffizient des quadratischen Glieds darf aber nicht Null werden, denn dann hätten wir keine quadratische Gleichung. Beginnen wir mit dem Fall, dass wir eine quadratische Gleichung ohne Absolutglied bzw. ohne Konstante gegeben haben. Schauen wir uns dazu dieses Beispiel an. Weil in beiden Gliedern x' vorkommt, dürfen wir es so ausklammern. Nun können wir den Satz vom Nullprodukt anwenden. Der besagt, dass ein Produkt Null ist, wenn einer der Faktoren Null ist. Wir setzen also den ersten Faktor gleich Null und erhalten sofort die erste Lösung: x1 gleich Null' Setzen wir den anderen Faktor gleich Null, erhalten wir eine lineare Gleichung. Stellen wir diese nach 'x' um, kommen wir auf die zweite Lösung. Eine quadratische Gleichung ohne Absolutglied, aber mit linearem Glied besitzt immer zwei Lösungen, von denen eine Null ist. Schauen wir uns nun eine Gleichung ohne lineares Glied an. Dazu können wir dieses Beispiel näher betrachten. Diese Form heißt auch reinquadratische Form. Um hier die Lösungen zu finden, bringen wir die Gleichung zunächst in Normalform. Dann holen wir die 9 auf die andere Seite. Nun müssen wir nur noch die Wurzel ziehen. Wir erhalten zwei Lösungen, 3 und 'minus3'. Beide ergeben quadriert nämlich 9. Der Betrag beider Lösungen ist gleich groß. Schauen wir uns nun noch dieses Beispiel an. Wir gehen genauso vor: Zuerst bringen wir die Gleichung in Normalform und stellen nach 'x Quadrat' um. Weil unter der Wurzel eine negative Zahl steht, können wir die Wurzel diesmal nicht ziehen. Die Gleichung besitzt daher keine Lösung. Eine quadratische Gleichung mit Absolutglied, aber ohne lineares Glied besitzt entweder zwei betragsgleiche Lösungen oder keine. Dabei kommt es darauf an, ob eine positive oder eine negative Zahl unter der Wurzel auftaucht. Haben wir eine quadratische Gleichung ohne lineares Glied und ohne Absolutglied gegeben, ist die Lösung Null. Dann gibt es auch nur diese eine Lösung. Fassen wir das noch einmal zusammen. Besitzt eine quadratische Gleichung in allgemeiner Form kein Absolutglied, aber ein lineares Glied, dann besitzt sie immer zwei Lösungen, von denen eine Null ist. Aus der quadratischen Gleichung ergibt sich außerdem eine lineare Gleichung, deren Lösung durch Umstellen ermittelt werden kann. Die Form einer quadratische Gleichung, die in allgemeiner Form kein lineares Glied, aber ein Absolutglied besitzt, heißt auch reinquadratische Form. Sie besitzt entweder zwei betragsgleiche Lösungen, oder keine, je nachdem, welcher Wert nach dem Umstellen unter der Wurzel auftaucht. Besitzt eine quadratische Gleichung in allgemeiner Form weder lineares Glied noch Absolutglied, dann besitzt sie genau eine Lösung: Null. Das geht sogar noch schneller, als das Lösen von normalen quadratischen Gleichungen. Einfach himmlisch!
Lösungswege für spezielle quadratische Gleichungen Übung
-
Beschreibe die Eigenschaften spezieller quadratischer Gleichungen.
TippsEine quadratische Gleichung in allgemeiner Form lautet:
- $\underbrace{ax^2}_{\text{quadratisches}\\ \text{ Glied}} + \underbrace{bx}_{\text{lineares} \\ \text{ Glied}} + \underbrace{c}_{\text{Absolutglied}} = 0$
Für die allgemeine Form einer quadratischen Gleichung gilt $a\neq 0$. Ist $b=0$ und $c\neq 0$, so liegt eine reinquadratische Gleichung vor.
LösungEine quadratische Gleichung in allgemeiner Form lautet:
- $\underbrace{ax^2}_{\text{quadratisches}\\ \text{ Glied}} + \underbrace{bx}_{\text{lineares} \\ \text{ Glied}} + \underbrace{c}_{\text{Absolutglied}} = 0$
Dabei sind $a$, $b$ und $c$ Koeffizienten. Es gilt immer $a\neq 0$.
Variante 1: $ax^2+ bx +0= 0$
- $b\neq 0$
- $c=0$
Eine quadratische Gleichung dieser Form kann man durch Ausklammern der Variablen lösen. So wird die quadratische Gleichung als Multiplikation dargestellt, die eine lineare Gleichung als Faktor enthält.
Variante 2: $ax^2+ 0\cdot x+ c= ax^2+ c=0$
- $b=0$
- $c\neq 0$
Eine quadratische Gleichung dieser Form heißt auch reinquadratische Form.
Variante 3: $ax^2+ 0\cdot x+ 0=ax^2=0$
- $b=0$
- $c=0$
-
Berechne die Lösungen der speziellen quadratischen Gleichungen.
TippsEine quadratische Gleichung kann maximal zwei Lösungen besitzen.
Erhältst du beim Umformen eine negative Zahl unter der Wurzel, so hat die quadratische Gleichung keine Lösung.
LösungEine quadratische Gleichung in allgemeiner Form lautet:
- $\underbrace{ax^2}_{\text{quadratisches}\\ \text{ Glied}} + \underbrace{bx}_{\text{lineares} \\ \text{ Glied}} + \underbrace{c}_{\text{Absolutglied}} = 0$
- Variante 1: Besitzt eine quadratische Gleichung in allgemeiner Form kein Absolutglied, aber ein lineares Glied, dann besitzt sie immer zwei Lösungen, von denen eine Null ist.
- Variante 2: Besitzt eine quadratische Gleichung in allgemeiner Form kein lineares Glied, aber ein Absolutglied, dann besitzt sie entweder zwei betragsgleiche Lösungen oder keine Lösung.
- Variante 3: Besitzt eine quadratische Gleichung in allgemeiner Form weder ein lineares Glied noch ein Absolutglied, dann besitzt sie eine Lösung, nämlich Null.
Gleichung 1: $~2x^2-6x=0$
Wir haben hier eine quadratische Gleichung ohne Absolutglied. Also können wir die Variable $x$ ausklammern und den Satz vom Nullprodukt anwenden. Demnach ist ein Produkt dann Null, wenn einer der Faktoren Null ist:
$\begin{array}{rcll} 2x^2-6x &=& 0 & \vert ~\text{ausklammern} \\ x(2x-6) &=& 0 & \\ \end{array}$
Nun können wir beide Faktoren getrennt betrachten:
$\begin{array}{llllllllllll} x_1 &=& 0 & & & & & & 2x_2-6 &=& 0 & \vert +6 \\ & & & & & & & & 2x_2 &=& 6 & \vert :2 \\ & & & & & & & & x_2 &=& 3 & \\ \\ \end{array}$
Gleichung 2: $~2x^2-18=0$
Wir haben hier eine reinquadratische Gleichung. Diese besitzt entweder zwei betragsgleiche Lösungen oder keine Lösung:
$\begin{array}{rcll} 2x^2-18 &=& 0 & \vert +18 \\ 2x^2 &=& 18 & \vert :2 \\ x^2 &=& 9 & \vert \sqrt{~} \\ x_{1,2} &=& \pm\sqrt{9} & \\ \\ x_1 &=& 3 & \\ x_2 &=& -3 & \\ \\ \end{array}$
Gleichung 3: $~5x^2=0$
Eine Gleichung ohne lineares Glied und Absolutglied hat immer die Lösung $x=0$.
Gleichung 4: $~2x^2+18=0$
Wir haben hier eine reinquadratische Gleichung. Diese besitzt entweder zwei betragsgleiche Lösungen oder keine Lösung:
$\begin{array}{rcll} 2x^2+18 &=& 0 & \vert -18 \\ 2x^2 &=& -18 & \vert :2 \\ x^2 &=& -9 & \vert \sqrt{~} \\ x_{1,2} &=& \pm\sqrt{-9} & \\ \\ \end{array}$
Diese Gleichung hat also keine Lösung.
-
Erschließe die Art der quadratischen Gleichung.
TippsFolgende Formen stellen quadratische Gleichungen ohne Absolutglied dar:
- $ax^2+bx=0$
- $x(ax+b)=0$
- $ax^2=-bx$
Eine quadratische Gleichung ohne lineares Glied und Absolutglied hat immer die Lösung $0$.
LösungEine quadratische Gleichung in allgemeiner Form lautet:
- $\underbrace{ax^2}_{\text{quadratisches}\\ \text{ Glied}} + \underbrace{bx}_{\text{lineares} \\ \text{ Glied}} + \underbrace{c}_{\text{Absolutglied}} = 0$
Variante 1:
Besitzt eine quadratische Gleichung in allgemeiner Form kein Absolutglied, aber ein lineares Glied, dann besitzt sie immer zwei Lösungen, von denen eine Null ist. Dieser Variante können wir die folgenden Gleichungen zuordnen:
- $x(3x+6)=0$
- $x^2+x=0$
Besitzt eine quadratische Gleichung in allgemeiner Form kein lineares Glied, aber ein Absolutglied, dann besitzt sie entweder zwei betragsgleiche Lösungen oder keine Lösung. Hierzu passen folgende Gleichungen:
- $2x^2-8=0$
- $16-x^2=0$
- $2x^2+6=0$
Besitzt eine quadratische Gleichung in allgemeiner Form weder ein lineares Glied noch ein Absolutglied, dann besitzt sie eine Lösung, nämlich Null. Dieser Variante ordnen wir folgende Gleichungen zu:
- $x^2=0$
- $0=x^2$
-
Ermittle die Lösungen der quadratischen Gleichungen.
TippsEnthält eine quadratische Gleichung kein Absolutglied, so kannst du die Variable $x$ ausklammern und den Satz vom Nullprodukt anwenden.
Der Satz vom Nullprodukt besagt, dass ein Produkt dann Null ist, wenn einer der Faktoren Null ist.
Enthält eine quadratische Gleichung kein lineares Glied, so hat sie entweder zwei betragsgleiche Lösungen oder keine Lösung.
LösungEnthält eine quadratische Gleichung kein lineares Glied, so hat sie entweder zwei betragsgleiche Lösungen oder keine Lösung. Gleichungen dieser Form sind:
Beispiel 1
$\begin{array}{rcll} x^2-4 &=& 0 & \vert +4 \\ x^2 &=& 4 & \vert \sqrt{~} \\ x_{1,2} &=& \pm\sqrt{4} & \\ \\ x_1 &=& 2 & \\ x_2 &=& -2 & \end{array}$
Beispiel 2
$\begin{array}{rcll} -3x^2+3 &=& 0 & \vert -3 \\ -3x^2 &=& -3 & \vert :(-3) \\ x^2 &=& 1 & \vert \sqrt{~} \\ x_{1,2} &=& \pm\sqrt{1} & \\ \\ x_1 &=& 1 & \\ x_2 &=& -1 & \\ \\ \end{array}$
Enthält eine quadratische Gleichung kein Absolutglied, so kannst du die Variable $x$ ausklammern und den Satz vom Nullprodukt anwenden. Dieser besagt, dass ein Produkt dann Null ist, wenn einer der Faktoren Null ist. Gleichungen dieser Form sind:
Beispiel 3
$\begin{array}{rcl} 3x^2+6x &=& 0 \\ x\cdot(3x+6) &=& 0 \\ x_1 &=& 0 \end{array}$
Für die zweite Lösung setzen wir den linearen Faktor gleich Null und erhalten:
$\begin{array}{rcll} 3x+6 &=& 0 & \vert -6 \\ 3x &=& -6 & \vert :3 \\ x_2 &=& -2 \\ \\ \end{array}$
Beispiel 4
$\begin{array}{rcl} x^2+6x &=& 0 \\ x\cdot (x+6) &=& 0 \\ x_1 &=& 0 \end{array}$
Für die zweite Lösung setzen wir den linearen Faktor gleich Null und erhalten:
$\begin{array}{rcll} x+6 &=& 0 & \vert -6 \\ x_2 &=& -6 \end{array}$
-
Benenne die Glieder in der allgemeinen Form der quadratischen Gleichung.
TippsDamit man von einer quadratischen Gleichung sprechen kann, darf das quadratische Glied nicht wegfallen, daher gilt immer $a\neq 0$.
In der Gleichung $x^2+5=0$ fehlt das lineare Glied.
LösungEine quadratische Gleichung in allgemeiner Form lautet:
- $\underbrace{ax^2}_{\text{quadratisches}\\ \text{ Glied}} + \underbrace{bx}_{\text{lineares} \\ \text{ Glied}} + \underbrace{c}_{\text{Absolutglied}} = 0$
Variante 1: $~ax^2+bx=0$
Besitzt eine quadratische Gleichung in allgemeiner Form kein Absolutglied, aber ein lineares Glied, dann besitzt sie immer zwei Lösungen, von denen eine Null ist.
Variante 2: $~ax^2+c=0$
Besitzt eine quadratische Gleichung in allgemeiner Form kein lineares Glied, aber ein Absolutglied, dann besitzt sie entweder zwei betragsgleiche Lösungen oder keine Lösung.
Variante 3: $~ax^2=0$
Besitzt eine quadratische Gleichung in allgemeiner Form weder ein lineares Glied noch ein Absolutglied, dann besitzt sie eine Lösung, nämlich Null.
-
Bestimme die Lösung der Gleichung.
TippsVereinfache die linke und rechte Seite der Gleichung so weit wie möglich. Forme die Gleichung dann so um, dass auf einer Seite der Gleichung eine Null steht.
Die erste binomische Formel lautet:
- $(a+b)^2=a^2+2ab+b^2$
LösungGegeben ist folgende Gleichung:
- $(x+1)^2+11(x^2-3)=2x(2x+1)$
$\begin{array}{rcll} (x+1)^2+11(x^2-3) &=& 2x(2x+1) & \\ x^2+2x+1+11x^2-33 &=& 4x^2+2x & \\ 12x^2+2x-32 &=& 4x^2+2x & \vert -2x \\ 12x^2-32 &=& 4x^2& \vert -4x^2 \\ 8x^2-32 &=& 0 & \\ \end{array}$
Wir erhalten hier eine quadratische Gleichung ohne lineares Glied. Diese hat entweder zwei betragsgleiche oder keine Lösung. Es folgt:
$\begin{array}{rcll} 8x^2-32 &=& 0 & \vert +32 \\ 8x^2 &=& 32 & \vert :8 \\ x^2 &=& 4 & \vert \sqrt{~} \\ x_{1,2} &=& \pm\sqrt{4} & \\ \\ x_{1} &=& 2 & \\ x_{2} &=& -2 & \\ \end{array}$
8.807
sofaheld-Level
6.601
vorgefertigte
Vokabeln
7.859
Lernvideos
37.809
Übungen
33.936
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Primzahlen
- Geometrische Lagebeziehungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Was Ist Eine Viertelstunde
- Prisma
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Aufbau von Dreiecken
- Quader
- Satz Des Pythagoras
- Dreieck Grundschule
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Volumen Kugel
- Zahlen In Worten Schreiben
- Meter
- Orthogonalität
- Schriftlich Multiplizieren
- Brüche gleichnamig machen
- Brüche Multiplizieren
- Potenzgesetze
- Distributivgesetz
- Flächeninhalt Dreieck
- Rationale Zahlen
- Volumen Berechnen
- Brüche Addieren
- Kongruenz
- Exponentialfunktion
- Exponentialfunktion Beispiel
richtig gut zusammengefasst!
cooles video es hat mir wirklich weitergeholfen und es ist super erklärt