Jetzt 30 Tage gratis testen & in der Schule richtig durchstarten!

Mit unseren lustigen Videos & Übungen motiviert Wissenslücken schließen.

Lösungswege für quadratische Gleichungen

Bewertung

Ø 4.1 / 13 Bewertungen

Die Autor/-innen
Avatar
Team Digital

Lösungswege für quadratische Gleichungen

lernst du in der 7. Klasse - 8. Klasse - 9. Klasse - 10. Klasse

Beschreibung Lösungswege für quadratische Gleichungen

Nach dem Schauen dieses Videos wirst du in der Lage sein, die Lösungen quadratischer Gleichungen zu berechnen.

Zunächst lernst du, in welchen Formen eine quadratische Gleichung dargestellt sein kann. Anschließend werden die Lösungen einer quadratischen Gleichung mittels pq-Formel berechnet. Abschließend lernst du, wie du die Lösungen einer quadratischen Gleichung in Linearfaktorzerlegung einfach ablesen kannst.

Lerne etwas über die Bestimmung der Lösungen von quadratischen Gleichungen.

Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie quadratische Gleichung, Lösung, Lösungsmenge, Produktform, Normalform und allgemeine Form.

Bevor du dieses Video schaust, solltest du bereits wissen, was eine quadratische Gleichung ist und in welchen Formen sie dargestellt werden kann. Außerdem solltest du die pq-Formel schon kennen.

Nach diesem Video wirst du darauf vorbereitet sein, die Nullstellen quadratischer Funktionen zu bestimmen.

Transkript Lösungswege für quadratische Gleichungen

Lina ist Sachbearbeiterin in der Abteilung für Gleichungen. Für manche wäre so ein Job ja die Hölle. Aber sie bearbeitet seit 35 Jahren lineare Gleichungen und das macht ihr viel Spaß, weil es so, äh, abwechslungsreich ist. Aber heute hat sie eine seltsame Gleichung bekommen, so etwas bearbeitet sie doch eigentlich gar nicht! Die Gleichung ist nämlich nicht linear, sondern quadratisch. Aber wie kann sie die lösen? Dazu beschäftigt sich Lina mit den Lösungswegen für quadratische Gleichungen. In diesem Video werden die Lösungswege für beliebige quadratische Gleichungen vorgestellt, die in allgemeiner Form, Normalform oder Linearfaktorzerlegung, auch Produktform genannt, gegeben sind. Beginnen wir mit den ersten beiden Formen: Jede quadratische Gleichung ist in allgemeiner Form und in Normalform darstellbar. Die einzelnen quadratischen Gleichungen unterscheiden sich nur durch die Koeffizienten ihrer Glieder und die Koeffizienten führen daher auch auf die Lösungen dieser Gleichungen. Die Lösungen einer quadratischen Gleichung in allgemeiner Form können wir mit Hilfe der Mitternachtsformel bestimmen. Ist sie in Normalform gegeben, benutzen wir die pq-Formel. Die quadratische Ergänzung funktioniert für beide Formen. In diesem Video beschränken wir uns auf die Anwendung der pq-Formel. Schauen wir uns dazu ein Beispiel an. Diese quadratische Gleichung ist in allgemeiner Form gegeben. Indem wir sie durch den Koeffizienten des quadratischen Glieds teilen, bringen wir sie in Normalform. In dieser Form können wir die Koeffizienten p und q direkt ablesen: 'p ist gleich 3' und 'q ist gleich 2'. Dann können wir die pq-Formel anwenden. Wir setzen die Koeffizienten ein und rechnen zuerst aus, was unter der Wurzel steht. Wir erhalten eine positive Zahl. Die Wurzel aus ein Viertel ist ein Halb. Die Gleichung besitzt zwei Lösungen, weil hier einmal plus und einmal Minus gerechnet wird. Für die erste Lösung addieren wir und erhalten: x1 gleich 'Minus 1'. Für die zweite Lösung subtrahieren wir und erhalten: x2 gleich 'Minus 2'. Die Lösungen für diese Gleichung lauten also 'Minus 1' und 'Minus 2'. Schauen wir uns noch dieses Beispiel an. Wir bringen die Gleichung in Normalform und lesen die Koeffizienten ab: 'p ist gleich 2' und 'q ist gleich 2'. Wir setzen sie in die pq-Formel ein und ermitteln den Wert unter der Wurzel. Wir erhalten eine negative Zahl. Weil man aus einer negativen Zahl keine Wurzel ziehen kann, hat diese Gleichung keine Lösung. Allgemein lässt sich über die pq-Formel folgendes sagen: Die Anzahl der Lösungen der entsprechenden quadratischen Gleichung hängt davon ab, welche Zahl sich unter der Wurzel befindet. Wenn dort eine positive Zahl steht, gibt es zwei Lösungen. Wenn unter der Wurzel eine Null steht, eine Lösung und wenn unter der Wurzel eine negative Zahl steht, keine Lösung. Neben der allgemeinen Form und der Normalform gibt es noch eine dritte Darstellung quadratischer Gleichungen. Dabei handelt es sich um ihre Linearfaktorzerlegung. Im ersten Moment sieht sie nicht nach einer quadratischen Gleichung aus. Wenn man aber die beiden Klammern ausmultipliziert, sieht man, dass ein 'x Quadrat' entsteht. In der Linearfaktorzerlegung kann man den Satz vom Nullprodukt anwenden. Der besagt, dass ein Produkt immer dann Null ist, wenn einer der Faktoren Null ist. Schauen wir uns dazu ein Beispiel an. Um die Lösungen zu ermitteln, müssen wir die beiden Klammern Null setzen. Wir erhalten die Lösungen 'plus 1' und 'minus 3'. Das ist, bis auf die Vorzeichen, genau das, was in den Klammern stand. Man kann die Lösungen hier also einfach ablesen. Weil diese Form die Lösungen aber direkt enthält, gibt es diese Form nicht für quadratische Gleichungen, die keine Lösung besitzen. Fassen wir das noch einmal zusammen: Jede quadratische Gleichung kann in ihre allgemeine Form gebracht werden. Sie besitzt dann drei Koeffizienten. Du kannst sie immer in Normalform umwandeln, indem du die ganze Gleichung durch 'a' teilst. In dieser Form ist der Koeffizient vor dem quadratischen Glied 1. Wir können dann p und q direkt ablesen. Du verwendest die pq-Formel, um die Lösungen zu ermitteln. Abhängig von der Zahl unter der Wurzel, gibt es zwei, eine oder keine Lösung. Eine quadratische Gleichung kann auch als Linearfaktorzerlegung gegeben sein. Diese Form existiert aber nicht für quadratische Gleichungen, die keine Lösung besitzen. Die Lösungen kannst du direkt ablesen. Gar nicht so schlecht, diese quadratischen Gleichungen, findet Lina. Also für Lina ist das nicht die Hölle!

1 Kommentar

1 Kommentar
  1. warum p/4 ich hatte das mit p/2 zum Quadrat gelernt steht auch bei uns so in der Formelsammlung?

    Von Markus Schewe, vor 3 Monaten

Lösungswege für quadratische Gleichungen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Lösungswege für quadratische Gleichungen kannst du es wiederholen und üben.
  • Gib die Formen für quadratische Gleichungen an.

    Tipps

    In einer quadratischen Gleichung ist die Variable zur zweiten Potenz erhoben.

    Teilst du die allgemeine Form einer quadratischen Gleichung durch den Koeffizienten des quadratischen Gliedes, so erhältst du die Normalform und kannst die $pq$-Formel anwenden.

    Lösung

    Eine quadratische Gleichung kann in unterschiedlichen Formen vorliegen. Die allgemeine Form lautet:

    • $\underbrace{ax^2}_{\text{quadratisches Glied}}+\underbrace{bx}_{\text{lineares Glied}}+\underbrace{c}_{\text{absolutes Glied}}=0$
    Dabei sind $a$, $b$ und $c$ die Koeffizienten. Eine quadratische Gleichung in der allgemeinen Form kann man direkt mit der Mitternachtsformel lösen. Teilt man die allgemeine Form durch den Koeffizienten $a$ des quadratischen Gliedes, so erhält man die Normalform. Bei der Normalform ist der Koeffizient des quadratischen Gliedes nämlich $1$. Wir geben diese wie folgt an:

    • $x^2+px+q=0$
    Speziell betrachtet, gilt dann $p=\frac ba$ und $q=\frac ca$.

    Eine quadratische Gleichung in Normalform lösen wir mit Hilfe der $pq$ -Formel. Hat eine quadratische Gleichung eine oder zwei Lösungen, so kann man sie auch in der Produktform angeben. Diese nennt man auch Linearfaktorzerlegung. Sie lautet allgemein:

    • $(x-m)(x-n)=0$
    Hier kann man die Lösungen $m$ und $n$ direkt ablesen, denn nach dem Satz vom Nullprodukt ist ein Produkt genau dann Null, wenn einer der Faktoren Null ist.

  • Bestimme die Lösungen der quadratischen Gleichungen.

    Tipps

    Die Normalform einer quadratischen Gleichung lautet:

    • $x^2+px+q=0$

    Die $pq$-Formel lautet:

    • $x_{1,2}=-\frac p2\pm\sqrt{\frac {p^2}4-q}$

    Um die Anzahl der Lösungen einer quadratischen Gleichung in Normalform zu bestimmen, betrachtet man die Diskriminante der entsprechenden $pq$-Formel:

    • $\frac {p^2}4-q>0$: zwei Lösungen
    • $\frac {p^2}4-q=0$: eine Lösung
    • $\frac {p^2}4-q<0$: keine Lösung
    Lösung

    Wir überführen die quadratischen Gleichungen in die Normalform, indem wir die Gleichungen jeweils durch ihren Koeffizienten im quadratischen Glied teilen. So erhalten wir Gleichungen in der Normalform:

    • $x^2+px+q=0$
    Mit der $pq$-Formel können wir dann die Lösungen wie folgt bestimmen:

    • $x_{1,2}=-\frac p2\pm\sqrt{\frac {p^2}4-q}$
    Um die Anzahl der Lösungen einer quadratischen Gleichung in Normalform zu bestimmen, betrachtet man die Diskriminante der entsprechenden $pq$-Formel:

    • $\frac {p^2}4-q>0$: zwei Lösungen
    • $\frac {p^2}4-q=0$: eine Lösung
    • $\frac {p^2}4-q<0$: keine Lösung
    Damit erhalten wir folgende Lösungen:

    Gleichung 1

    $\begin{array}{lllll} & 3x^2+9x+6 &=& 0 & \vert :3 \\ & x^2+3x+2 &=& 0 & \\ \end{array}$

    Mit den Koeffizienten $p=3$ und $q=2$ folgt:

    $\begin{array}{llll} & x_{1,2} &=& -\frac 32\pm\sqrt{\frac {3^2}4-2} \\ & x_{1,2} &=& -\frac 32\pm\sqrt{\frac 94-\frac 84} \\ & x_{1,2} &=& -\frac 32\pm\sqrt{\frac 14} \\ & x_{1,2} &=& -\frac 32\pm\frac 12 \\ \\ & x_1 &=& -1 \\ & x_2 &=& -2 \end{array}$

    Damit lautet die Lösungsmenge: $\mathbb{L}=\lbrace -1; -2\rbrace$

    Gleichung 2

    $\begin{array}{lllll} & 3x^2+6x+6 &=& 0 & \vert :3 \\ & x^2+2x+2 &=& 0 & \\ \end{array}$

    Mit den Koeffizienten $p=2$ und $q=2$ folgt:

    $\begin{array}{llll} & x_{1,2} &=& -\frac 22\pm\sqrt{\frac {2^2}4-2} \\ & x_{1,2} &=& - 1\pm\sqrt{1-2} \\ & x_{1,2} &=& - 1\pm\sqrt{-1} \end{array}$

    Da der Ausdruck unter der Wurzel negativ ist, hat diese quadratische Gleichung keine Lösung. Damit lautet die Lösungsmenge: $\mathbb{L}=\lbrace \rbrace$. Sie ist also leer.

  • Ermittle die Lösungen der quadratischen Gleichungen.

    Tipps

    Alle quadratischen Gleichungen liegen in der Normalform vor. Du kannst also die $pq$-Formel direkt verwenden:

    • $x_{1,2}=-\frac p2\pm\sqrt{\frac {p^2}4-q}$

    Sieh dir folgendes Beispiel an: $~x^2\ \underbrace{-4}_{p}\ x\ \underbrace{-5}_{q}\ =\ 0$

    $\begin{array}{llll} & x_{1,2} &=& -\frac {-4}2\pm\sqrt{\frac {-4^2}4-(-5)} \\ & x_{1,2} &=& 2\pm\sqrt{4+5} \\ & x_{1,2} &=& 2\pm\sqrt{9} \\ & x_{1,2} &=& 2\pm 3 \\ \\ & x_1 &=& 5 \\ & x_2 &=& -1 \end{array}$

    Lösung

    Wir setzen die Koeffizienten $p$ und $q$ aus der Normalform $x^2+px+q=0$ und die $pq$-Formel ein:

    • $x_{1,2}=-\frac p2\pm\sqrt{\frac {p^2}4-q}$
    Damit erhalten wir die folgenden Lösungen:

    Gleichung 1: $~x^2 + 2x + 1 = 0$

    Mit den Koeffizienten $p=2$ und $q=1$ folgt:

    $\begin{array}{llll} & x_{1,2} &=& -\frac 22\pm\sqrt{\frac {2^2}4-1} \\ & x_{1,2} &=& -1\pm\sqrt{1-1} \\ & x_{1,2} &=& -1\pm\sqrt{0} \\ & x_{1,2} &=& -1\pm 0 \\ \\ & x &=& -1 \end{array}$

    Damit lautet die Lösungsmenge: $\mathbb{L}=\lbrace -1\rbrace$

    Gleichung 2: $~x^2 + 10x + 9 = 0$

    Mit den Koeffizienten $p=10$ und $q=9$ folgt:

    $\begin{array}{llll} & x_{1,2} &=& -\frac {10}2\pm\sqrt{\frac {10^2}4-9} \\ & x_{1,2} &=& -5\pm\sqrt{25-9} \\ & x_{1,2} &=& -5\pm\sqrt{16} \\ & x_{1,2} &=& -5\pm 4 \\ \\ & x_1 &=& -1 \\ & x_2 &=& -9 \\ \end{array}$

    Damit lautet die Lösungsmenge: $\mathbb{L}=\lbrace -1; -9\rbrace$

    Gleichung 3: $~x^2 + 8x + 7 = 0$

    Mit den Koeffizienten $p=8$ und $q=7$ folgt:

    $\begin{array}{llll} & x_{1,2} &=& -\frac {8}2\pm\sqrt{\frac {8^2}4-7} \\ & x_{1,2} &=& -4\pm\sqrt{16-7} \\ & x_{1,2} &=& -4\pm\sqrt{9} \\ & x_{1,2} &=& -4\pm 3 \\ \\ & x_1 &=& -1 \\ & x_2 &=& -7 \\ \end{array}$

    Damit lautet die Lösungsmenge: $\mathbb{L}=\lbrace -1; -7\rbrace$

    Gleichung 4: $~x^2 + 8x -9 = 0$

    Mit den Koeffizienten $p=8$ und $q=-9$ folgt:

    $\begin{array}{llll} & x_{1,2} &=& -\frac {8}2\pm\sqrt{\frac {8^2}4-(-9)} \\ & x_{1,2} &=& -4\pm\sqrt{16+9} \\ & x_{1,2} &=& -4\pm\sqrt{25} \\ & x_{1,2} &=& -4\pm 5 \\ \\ & x_1 &=& 1 \\ & x_2 &=& -9 \\ \end{array}$

    Damit lautet die Lösungsmenge: $\mathbb{L}=\lbrace 1; -9\rbrace$

  • Erschließe die Lösungen der quadratischen Gleichungen.

    Tipps

    Bringe die Gleichungen in die Normalform, indem du sie jeweils durch den Koeffizienten ihres quadratischen Gliedes teilst.

    Beachte die Vorzeichen der Koeffizienten.

    Sieh dir folgendes Beispiel an: $~-\frac 15x^2 + 3x + 6 = 0$

    Diese Gleichung überführst du in die Normalform, indem du entweder durch $-\frac 15$ teilst oder mit $-5$ multiplizierst.

    Lösung

    Wir überführen die quadratischen Gleichungen in die Normalform, indem wir die Gleichungen jeweils durch den Koeffizienten ihres quadratischen Gliedes teilen. So erhalten wir Gleichungen in der Normalform:

    • $x^2+px+q=0$
    Mit der $pq$-Formel können wir dann die Lösungen wie folgt bestimmen:

    • $x_{1,2}=-\frac p2\pm\sqrt{\frac {p^2}4-q}$
    Um die Anzahl der Lösungen einer quadratischen Gleichung in Normalform zu bestimmen, betrachtet man die Diskriminante der entsprechenden $pq$-Formel:

    • $\frac {p^2}4-q>0$: zwei Lösungen
    • $\frac {p^2}4-q=0$: eine Lösung
    • $\frac {p^2}4-q<0$: keine Lösung
    Damit erhalten wir folgende Lösungen:

    Gleichung 1

    $\begin{array}{lllll} & 4x^2 + 8x -12 &=& 0 & \vert :4 \\ & x^2 + 2x -3 &=& 0 & \\ \end{array}$

    Mit den Koeffizienten $p=2$ und $q=-3$ folgt:

    $\begin{array}{llll} & x_{1,2} &=& -\frac 22\pm\sqrt{\frac {2^2}4-(-3)} \\ & x_{1,2} &=& -1\pm\sqrt{1+3} \\ & x_{1,2} &=& -1\pm\sqrt{4} \\ & x_{1,2} &=& -1\pm 2 \\ \\ & x_1 &=& 1 \\ & x_2 &=& -3 \end{array}$

    Damit lautet die Lösungsmenge: $\mathbb{L}=\lbrace 1; -3\rbrace$

    Gleichung 2

    $\begin{array}{lllll} & -3x^2 - 6x - 3 &=& 0 & \vert :(-3) \\ & x^2 + 2x +1 &=& 0 & \\ \end{array}$

    Mit den Koeffizienten $p=2$ und $q=1$ folgt:

    $\begin{array}{llll} & x_{1,2} &=& -\frac 22\pm\sqrt{\frac {2^2}4-1} \\ & x_{1,2} &=& -1\pm\sqrt{1-1} \\ & x_{1,2} &=& -1\pm\sqrt{0} \\ & x_{1,2} &=& -1\pm 0 \\ \\ & x &=& -1 \end{array}$

    Damit lautet die Lösungsmenge: $\mathbb{L}=\lbrace -1\rbrace$

    Gleichung 3

    $\begin{array}{lllll} & \frac 12x^2 + 3x + 4 &=& 0 & \vert \cdot 2 \\ & x^2 + 6x + 8 &=& 0 & \\ \end{array}$

    Mit den Koeffizienten $p=6$ und $q=8$ folgt:

    $\begin{array}{llll} & x_{1,2} &=& -\frac 62\pm\sqrt{\frac {6^2}4-8} \\ & x_{1,2} &=& -3\pm\sqrt{9-8} \\ & x_{1,2} &=& -3\pm\sqrt{1} \\ & x_{1,2} &=& -3\pm 1 \\ \\ & x_1 &=& -2 \\ & x_2 &=& -4 \end{array}$

    Damit lautet die Lösungsmenge: $\mathbb{L}=\lbrace -2; -4\rbrace$

  • Gib den Zusammenhang zwischen der Anzahl der Lösungen einer quadratischen Gleichung und der Diskriminante der $pq$-Formel an.

    Tipps

    Die $pq$-Formel lautet:

    • $x_{1,2}=-\frac p2\pm\sqrt{\frac {p^2}4-q}$
    Die Diskriminante ist der Ausdruck unter der Wurzel.

    Es gilt:

    • $\left(\dfrac ab\right)^2=\dfrac{a^2}{b^2}$

    Bedenke, dass du aus negativen Zahlen keine Wurzel ziehen kannst, wenn du nur mit reellen Zahlen rechnest.

    Lösung

    Die $pq$-Formel lautet:

    • $x_{1,2}=-\frac p2\pm\sqrt{\frac {p^2}4-q}$
    Man kann sie auch wie folgt angeben:

    • $x_{1,2}=-\frac p2\pm\sqrt{\left(\frac p2\right)^2-q}$
    Wird ein Bruch potenziert, so werden jeweils Zähler und Nenner potenziert. Daher gibt es diese beiden Schreibweisen. Die Diskriminante ist der Ausdruck unter der Wurzel. Diese verrät uns die Anzahl der Lösungen einer quadratischen Gleichung. Es gilt nämlich:

    • $\left(\frac p2\right)^2-q=\frac {p^2}4-q>0$: zwei Lösungen
    • $\left(\frac p2\right)^2-q=\frac {p^2}4-q=0$: eine Lösung
    • $\left(\frac p2\right)^2-q=\frac {p^2}4-q<0$: keine Lösung
  • Bestimme die Linearfaktorzerlegungen der quadratischen Gleichungen in Normalform.

    Tipps

    Hat eine quadratische Gleichung in Normalform die Lösungen $m$ und $n$, so kannst du die Produktform dieser Gleichung wie folgt schreiben:

    • $(x-m)(x-n)=0$

    Du kannst deine Ergebnisse überprüfen, indem du die Klammern der Linearfaktorzerlegung ausmultiplizierst. Es gilt:

    • $(a+b)(c+d)=ac+ad+bc+bd$
    Erhältst du dann die jeweilige quadratische Gleichung in Normalform, so ist die Linearfaktorzerlegung korrekt.

    Lösung

    Hat eine quadratische Gleichung in Normalform die Lösungen $m$ und $n$, so kannst du die Produktform dieser Gleichung wie folgt schreiben:

    • $(x-m)(x-n)=0$
    Da alle Gleichung bereits in der Normalform gegeben sind, können wir sie direkt mittels $pq$-Formel lösen:

    • $x_{1,2}=-\frac p2\pm\sqrt{\frac {p^2}4-q}$
    Für die Anzahl der Lösungen einer quadratischen Gleichung in Normalform gilt:

    • $\frac {p^2}4-q>0$: zwei Lösungen
    • $\frac {p^2}4-q=0$: eine Lösung
    • $\frac {p^2}4-q<0$: keine Lösung
    Damit erhalten wir folgende Lösungen:

    Gleichung 1: $~x^2 + 4x -12 = 0$

    $\begin{array}{llll} & x_{1,2} &=& -\frac 42\pm\sqrt{\frac {4^2}4+12} \\ & x_{1,2} &=& -2\pm\sqrt{16} \\ & x_{1,2} &=& -2\pm 4 \\ \\ & x_1 &=& 2 \\ & x_2 &=& -6 \end{array}$

    Die Produktform lautet dann: $~(x-2)(x+6)=0$

    Gleichung 2: $~x^2 + 5x + 4 = 0$

    $\begin{array}{llll} & x_{1,2} &=& -\frac 52\pm\sqrt{\frac {5^2}4-4} \\ & x_{1,2} &=& -\frac 52\pm\sqrt{\frac {25}4-\frac {16}4} \\ & x_{1,2} &=& -\frac 52\pm\sqrt{\frac 94} \\ & x_{1,2} &=& -\frac 52\pm\frac 32 \\ \\ & x_1 &=& -1 \\ & x_2 &=& -4 \end{array}$

    Die Produktform lautet dann: $~(x+1)(x+4)=0$

    Gleichung 3: $~x^2 + 8x - 9 = 0$

    $\begin{array}{llll} & x_{1,2} &=& -\frac 82\pm\sqrt{\frac {8^2}4+9} \\ & x_{1,2} &=& -4\pm\sqrt{25} \\ & x_{1,2} &=& -4\pm 5 \\ \\ & x_1 &=& 1 \\ & x_2 &=& -9 \end{array}$

    Die Produktform lautet dann: $~(x-1)(x+9)=0$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
Im Vollzugang erhältst du:

10.896

Lernvideos

44.418

Übungen

39.015

Arbeitsblätter

24h

Hilfe von Lehrer/
-innen

running yeti

In allen Fächern und Klassenstufen.

Von Expert/-innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden