Linearkombinationen

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Linearkombinationen Übung
-
Beschreibe, was man unter einer Linearkombination versteht.
TippsVektoraddition: Anschaulich werden die Vektorpfeile einfach wie eine Kette aneinandergesetzt. Das Ergebnis nennen wir einen Summenvektor. Analytisch können wir ihn berechnen, indem wir die Vektorkoordinaten zeilenweise addieren.
Skalare Multiplikation: Anschaulich wird ein Vektor dabei verlängert (oder auch verkürzt). Der Vektor wird dazu mit einer reellen Zahl multipliziert und somit vervielfacht.
Beispiel:
$2 \cdot \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} + \dfrac{1}{2} \cdot \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 3 \\ 1{,}5 \\ 5{,}5 \end{pmatrix}$
LösungWir betrachten zunächst uns bekannte Vektoroperationen:
Vektoraddition: Anschaulich werden die Vektorpfeile einfach wie eine Kette aneinandergesetzt. Das Ergebnis nennen wir einen Summenvektor. Analytisch können wir ihn berechnen, indem wir die Vektorkoordinaten zeilenweise addieren.
Skalare Multiplikation: Anschaulich wird ein Vektor dabei verlängert (oder auch verkürzt). Der Vektor wird dazu mit einer reellen Zahl multipliziert und somit vervielfacht.
Bei einer Linearkombination werden diese beiden Rechenoperationen verbunden angewendet: Eine Linearkombination ist eine Summe aus beliebig vielen Vektoren, die mit verschiedenen Skalaren multipliziert werden können.
Beispiel:
Vektoren $\vec{a} = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$ und $\vec{b} = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$
Wir addieren nun das Doppelte des ersten Vektors zur Hälfte des zweiten Vektors:
$2 \cdot \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} + \dfrac{1}{2} \cdot \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$
Als Ergebnis erhalten wir wieder einen dreizeiligen Vektor. Dabei gehen wir zeilenweise vor:
- Für die erste Koordinate rechnen wir: $2 \cdot 1 + \dfrac{1}{2} \cdot 2 = 3$
- Für die zweite Koordinate rechnen wir: $2 \cdot 0 + \dfrac{1}{2} \cdot 3 = 1{,}5$
- Für die dritte Koordinate rechnen wir: $2 \cdot 3 + \dfrac{1}{2} \cdot (-1) = 5{,}5$
Wir erhalten also:
$2 \cdot \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} + \dfrac{1}{2} \cdot \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 3 \\ 1{,}5 \\ 5{,}5 \end{pmatrix}$
Wir dürfen die Skalare jedoch nicht einfach vertauschen: Addiert man die Hälfte des ersten Vektors mit dem Doppelten des zweiten Vektors, erhält man einen komplett anderen Vektor.
Da wir für die Skalare alle reellen Zahlen einsetzen dürfen, können wir aus nur zwei Vektoren unendlich viele Linearkombinationen bilden.
-
Berechne die Linearkombinationen der Vektoren.
TippsFühre die Rechnung zeilenweise durch.
$2 \cdot \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} + \dfrac{1}{2} \cdot \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$
- Für die erste Koordinate rechnen wir: $2 \cdot 1 + \dfrac{1}{2} \cdot 2$
- Für die zweite Koordinate rechnen wir: $2 \cdot 0 + \dfrac{1}{2} \cdot 3$
- Für die dritte Koordinate rechnen wir: $2 \cdot 3 + \dfrac{1}{2} \cdot (-1)$
LösungEine Linearkombination ist eine Summe von Vielfachen von Vektoren. Dabei können wir unendlich viele Vektoren addieren und sie außerdem mit allen möglichen reellen Zahlen multiplizieren.
In unserem Fall handelt es sich um eine Summe aus zwei Vektoren, welche jeweils mit einem Skalar multipliziert werden. Wir rechnen zeilenweise und erhalten:
$\begin{array}{rcl} 2 \cdot \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} + \dfrac{1}{2} \cdot \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} &=& \begin{pmatrix} 3 \\ 1{,}5 \\ 5{,}5 \end{pmatrix} \\ \\ \dfrac{1}{2} \cdot \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} + 2 \cdot \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} &=& \begin{pmatrix} 4{,}5 \\ 6 \\ -0{,}5 \end{pmatrix} \\ \\ -2 \cdot \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} + \dfrac{1}{5} \cdot \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} &=& \begin{pmatrix} -1{,}6 \\ 0{,}6 \\ -6{,}2 \end{pmatrix} \\ \\ 3 \cdot \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} - 1 \cdot \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} &=& \begin{pmatrix} 1 \\ -3 \\ 10 \end{pmatrix} \end{array}$
-
Bestimme das Ergebnis der Linearkombination für die gegebenen Werte von $r$, $s$ und $t$.
TippsSetze für die Variablen $r$, $s$ und $t$ die jeweils gegebenen Werte ein und berechne die Linearkombination schriftlich. Gehe dabei zeilenweise vor.
Du darfst die Skalare, also die Faktoren vor den Vektoren, nicht vertauschen!
Für die erste Koordinate der ersten Linearkombination rechnest du:
$1 \cdot (-1) + 2 \cdot 3 + (-2) \cdot 2$
LösungBei einer Linearkombination werden die Vektoraddition und die skalare Multiplikation verbunden angewendet: Es handelt sich um eine Summe aus beliebig vielen Vektoren, die mit verschiedenen Skalaren multipliziert werden können.
Wir betrachten die gegebene Linearkombination:
Da wir für die Skalare $r$, $s$ und $t$ alle reellen Zahlen einsetzen dürfen, können wir aus den drei Vektoren unendlich viele Linearkombinationen bilden. Wir berechnen die Linearkombinationen für die gegebenen Werte.
Beispiel 1: $~r=1; ~~ s=2; ~~ t=-2$
$1 \cdot \begin{pmatrix} -1 \\ 0 \\ 0{,}5 \end{pmatrix} +2 \cdot \begin{pmatrix} 3 \\ -4 \\ 2 \end{pmatrix} + (-2) \cdot \begin{pmatrix} 2 \\ -4 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \cdot (-1) + 2 \cdot 3 + (-2) \cdot 2 \\ 1 \cdot 0+ 2 \cdot (-4) + (-2) \cdot (-4) \\ 1 \cdot 0{,}5+ 2 \cdot 2 + (-2) \cdot 0 \end{pmatrix} = \color{#99CC00}{\begin{pmatrix} 1 \\ 0 \\ 4{,}5 \end{pmatrix}}$
Beispiel 2: $~r=0; ~~ s=3; ~~ t=-5$
$0 \cdot \begin{pmatrix} -1 \\ 0 \\ 0{,}5 \end{pmatrix} +3 \cdot \begin{pmatrix} 3 \\ -4 \\ 2 \end{pmatrix} + (-5) \cdot \begin{pmatrix} 2 \\ -4 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \cdot (-1) + 3 \cdot 3 + (-5) \cdot 2 \\ 0 \cdot 0+ 3 \cdot (-4) + (-5) \cdot (-4) \\ 0 \cdot 0{,}5+ 3 \cdot 2 + (-5) \cdot 0 \end{pmatrix} = \color{#99CC00}{\begin{pmatrix} -1 \\ 8 \\ 6 \end{pmatrix}}$
Beispiel 3: $~r=-2; ~~ s=1; ~~ t=-2$
$(-2) \cdot \begin{pmatrix} -1 \\ 0 \\ 0{,}5 \end{pmatrix} +2 \cdot \begin{pmatrix} 3 \\ -4 \\ 2 \end{pmatrix} + (-2) \cdot \begin{pmatrix} 2 \\ -4 \\ 0 \end{pmatrix} = \begin{pmatrix} (-2) \cdot (-1) + 1 \cdot 3 + (-2) \cdot 2 \\ (-2) \cdot 0+ 1 \cdot (-4) + (-2) \cdot (-4) \\ (-2) \cdot 0{,}5+ 1 \cdot 2 + (-2) \cdot 0 \end{pmatrix} = \color{#99CC00}{\begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix}}$
-
Ermittle die Skalare der Linearkombination.
TippsVerwende Variablen für die gesuchten Zahlen in den Lücken.
Stelle ein lineares Gleichungssystem auf und löse es.
Das lineare Gleichungssystem lautet:
$\begin{array}{rrrrrrrr} \text{I} & 3r &+ & 4s &+ & t = & 8 \\ \text{II} & -2r &+ & (-4)s &+ & 2t = & 0 \\ \text{III} & 0{,}5r & & & & = & -0{,}5 \\ \end{array}$
LösungWir benennen zunächst die gesuchten Skalare mit Variablen:
$r \cdot \begin{pmatrix} 3 \\ -2 \\ 0{,}5 \end{pmatrix} +s \cdot \begin{pmatrix} 4 \\ -4 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 8 \\ 0 \\ -0{,}5 \end{pmatrix}$
Wir können nun ein lineares Gleichungssystem aufstellen:
$\begin{array}{rrrrrrrl} \text{I} & 3r &+ & 4s &+ & t = & 8 \\ \text{II} & -2r &+ & (-4)s &+ & 2t = & 0 \\ \text{III} & 0{,}5r & & & & = & -0{,}5 \\ \end{array}$
Es ergibt sich aus Gleichung $\text{III}$:
$r=-1$
Wir setzen dies in Gleichung $\text{II}$ ein und erhalten:
$\begin{array}{rrrrrrrl} -2 \cdot (-1) & + & (-4)s &+ & 2t &= & 0 &\\ 2 & - & 4s & + & 2t &= & 0 & |-2 \\ & - & 4s & + & 2t &= & -2 & |+4s\\ & & & & 2t &= & -2 +4s & |:2\\ & & & & t &= & -1 +2s & \end{array}$
Wir setzen $r$ und $t$ in Gleichung $\text{I}$ ein:
$\begin{array}{rrrrrrrl} 3 \cdot (-1) & + & 4s &+ & (-1 +2s ) &= & 8 &\\ -4 & + & 6s & & &= & 8 & |+4 \\ & & 6s & & &= & 12 & |:6 \\ & & s & & &= & 2 & \end{array}$
Wir können jetzt die berechneten Werte für $r$ und $s$ in die Gleichung $\text{I}$ einsetzen und nach $t$ auflösen:
$\begin{array}{rrrrl} 3 \cdot (-1) & + & 4 \cdot 2 &+ & t &= & 8 &\\ & & 5 &+ & t &= & 8 & |-5\\ & & & & t &= & 3 & \end{array}$
Insgesamt gilt also:
$\color{#99CC00}{-1} \color{black}{~\cdot} \begin{pmatrix} 3 \\ -2 \\ 0{,}5 \end{pmatrix} + \color{#99CC00}{2} \color{black}{~\cdot} \begin{pmatrix} 4 \\ -4 \\ 0 \end{pmatrix} + \color{#99CC00}{3} \color{black}{~\cdot} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 8 \\ 0 \\ -0{,}5 \end{pmatrix}$
-
Bestimme das Ergebnis der Vektoraddition oder der skalaren Multiplikation.
TippsSkalare Multiplikation: Anschaulich wird ein Vektor dabei verlängert (oder auch verkürzt). Der Vektor wird dazu mit einer reellen Zahl multipliziert und somit vervielfacht.
LösungBei einer Linearkombination verbinden wir zwei Rechenoperationen:
Vektoraddition: Anschaulich werden die Vektorpfeile einfach wie eine Kette aneinandergesetzt. Das Ergebnis nennen wir einen Summenvektor. Analytisch können wir ihn berechnen, indem wir die Vektorkoordinaten zeilenweise addieren:
$\begin{array}{rclll} \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} + \begin{pmatrix} 5 \\ 1 \\ -1 \end{pmatrix} &=& \begin{pmatrix} 1+5 \\ 3+1 \\ 1+(-1) \end{pmatrix} &=& \color{#99CC00}{\begin{pmatrix} 6 \\ 4 \\ 0 \end{pmatrix}} \\ \\ \begin{pmatrix} -2 \\ 9 \\ 1 \end{pmatrix} + \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix} &=& \begin{pmatrix} -2+3 \\ 9+1 \\ 1+(-2) \end{pmatrix} &=& \color{#99CC00}{\begin{pmatrix} 1 \\ 10 \\ -1 \end{pmatrix}} \end{array}$
Skalare Multiplikation: Anschaulich wird ein Vektor dabei verlängert (oder auch verkürzt). Der Vektor wird dazu mit einer reellen Zahl multipliziert und somit vervielfacht.
$\begin{array}{rclll} 4 \cdot \begin{pmatrix} 3 \\ 0{,}5 \\ -1 \end{pmatrix} &=& \begin{pmatrix} 4 \cdot 3 \\ 4 \cdot 0{,}5 \\ 4 \cdot (-1) \end{pmatrix} &=& \color{#99CC00}{\begin{pmatrix} 12 \\ 2 \\ -4 \end{pmatrix}} \\ \\ 2 \cdot \begin{pmatrix} -2 \\ 0 \\ 3 \end{pmatrix} &=& \begin{pmatrix} 2 \cdot (-2) \\ 2 \cdot 0 \\ 2 \cdot 3 \end{pmatrix} &=& \color{#99CC00}{\begin{pmatrix} -4 \\ 0 \\ 6 \end{pmatrix}} \end{array}$
-
Überprüfe, ob der Vektor $\vec{c}$ als Linearkombination von $\vec{a}$ und $\vec{b}$ dargestellt werden kann.
TippsGehe so vor:
1. Benennung der gesuchten Skalare mit Variablen: $r \cdot \vec{a} + s \cdot \vec{b} = \vec{c}$
2. Aufstellen eines linearen Gleichungssystems
3. Lösen des linearen Gleichungssystems
4. SchlussfolgerungÜberprüfe beim Lösen des linearen Gleichungssystems immer, ob alle drei Gleichungen erfüllt sind.
LösungAllgemein gehen wir so vor:
1. Benennung der gesuchten Skalare mit Variablen: $r \cdot \vec{a} + s \cdot \vec{b} = \vec{c}$
2. Aufstellen eines linearen Gleichungssystems
3. Lösen des linearen Gleichungssystems
4. Schlussfolgerung$\,$
- Erste Kombination:
$r \cdot \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix} +s \cdot \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix} = \begin{pmatrix} 9 \\ 2 \\ 22 \end{pmatrix}$
Wir stellen ein lineares Gleichungssystem auf:
$\begin{array}{rrrrrrrr} \text{I} & r &+ & 3s & = & 9\\ \text{II} & -2r & + & 4s& = & 2 \\ \text{III} & 4r & + &5s& = & 22 \\ \end{array}$
Wir lösen das lineare Gleichungssystem:
Aus Gleichung $\text{I}$ ergibt sich:
$r=9-3s$
Durch Einsetzen in Gleichung $\text{II}$ folgt:
$-2 \cdot (9-3s) + 4s = 2 \quad \Leftrightarrow \quad -18 +10s = 2 \quad \Leftrightarrow \quad s= 2$
Einsetzen in Gleichung $\text{I}$ ergibt:
$r=9-3s = 9-6=3$
Überprüfen in Gleichung $\text{III}$ führt zu:
$4 \cdot 3 + 5 \cdot 2 = 12+10=22 \quad$ Stimmt!
Wir schlussfolgern:
Vektor $\vec{c}$ lässt sich eindeutig als Linearkombination von $\vec{a}$ und $\vec{b}$ darstellen. Die Skalare $r$ und $s$ sind positiv.
$\,$
- Zweite Kombination:
$r \cdot \begin{pmatrix} 0 \\ -1 \\ 5 \end{pmatrix} +s \cdot \begin{pmatrix} 2 \\ 3 \\ -2 \end{pmatrix} = \begin{pmatrix} -2 \\ -8 \\ -10 \end{pmatrix}$
Wir stellen ein lineares Gleichungssystem auf:
$\begin{array}{rrrrrrrr} \text{I} & & & 2s & = & -2\\ \text{II} & -r & + & 3s& = & -8 \\ \text{III} & 5r & - &2s& = & -10 \\ \end{array}$
Wir lösen das lineare Gleichungssystem:
Aus Gleichung $\text{I}$ folgt:
$s=-1$
Einsetzen in Gleichung $\text{II}$ ergibt:
$-r + 3 \cdot (-1)=-8 \quad \Leftrightarrow \quad -r -3=-8 \quad \Leftrightarrow \quad r=5$
Überprüfen in Gleichung $\text{III}$ führt zu:
$5 \cdot 5 - 2 \cdot (-1) = 25+2= 27 \neq -10 \quad$ Stimmt nicht!
Wir schlussfolgern:
Das Gleichungssystem ist nicht lösbar. Vektor $\vec{c}$ lässt sich nicht als Linearkombination von $\vec{a}$ und $\vec{b}$ darstellen.
$\,$
- Dritte Kombination:
$r \cdot \begin{pmatrix} 3 \\6 \\ -3 \end{pmatrix} +s \cdot \begin{pmatrix} 4 \\ 8 \\ -4 \end{pmatrix} = \begin{pmatrix} -2 \\ -4 \\ 2 \end{pmatrix}$
Wir stellen ein lineares Gleichungssystem auf:
$\begin{array}{rrrrrrrr} \text{I} & 3r &+ & 4s & = & -2\\ \text{II} & 6r & + & 8s& = & -4 \\ \text{III} & -3r & - &4s& = & 2 \\ \end{array}$
Wir lösen das lineare Gleichungssystem:
Aus Gleichung $\text{I}$ ergibt sich:
$4s = -2-3r \quad \Leftrightarrow \quad s = -0{,}5 - 0{,}75r$
Durch Einsetzen in Gleichung $\text{II}$ folgt:
$6r + 8(-0{,}5 - 0{,}75r) = -4 \quad \Leftrightarrow \quad -4=-4$
Einsetzen in Gleichung $\text{III}$ ergibt:
$-3r -4(-0{,}5 - 0{,}75r)=2 \quad \Leftrightarrow \quad 2=2$
Wir schlussfolgern:
Das lineare Gleichungssystem hat unendlich viele Lösungen. Vektor $\vec{c}$ lässt sich auf unendlich viele Arten als Linearkombination von $\vec{a}$ und $\vec{b}$ darstellen.
$\,$
- Vierte Kombination:
$r \cdot \begin{pmatrix} 3 \\ 0 \\ -5 \end{pmatrix} +s \cdot \begin{pmatrix} 0 \\ 1 \\2 \end{pmatrix} = \begin{pmatrix} -6 \\-1 \\ 8 \end{pmatrix}$
Wir stellen ein lineares Gleichungssystem auf:
$\begin{array}{rrrrrrrr} \text{I} & 3r & & & = & -6 \\ \text{II} & & & s& = & -1 \\ \text{III} & -5r & + &2s& = & 8 \\ \end{array}$
Wir lösen das lineare Gleichungssystem:
Aus Gleichung $\text{I}$ ergibt sich:
$3r = -6 \quad \Leftrightarrow \quad r=-2$
Aus Gleichung $\text{II}$ folgt:
$s=-1$
Überprüfen in Gleichung $\text{III}$ führt zu:
$-5 \cdot (-2) + 2 \cdot (-1) = 10 -2 = 8 \quad$ Stimmt!
Wir schlussfolgern:
Vektor $\vec{c}$ lässt sich eindeutig als Linearkombination von $\vec{a}$ und $\vec{b}$ darstellen. Die Skalare $r$ und $s$ sind negativ.
9.360
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.211
Lernvideos
38.688
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt