Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Grenzwertsätze für Funktionen

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.5 / 10 Bewertungen
Die Autor*innen
Avatar
Giuliano Murgo
Grenzwertsätze für Funktionen
lernst du in der 11. Klasse - 12. Klasse

Grenzwertsätze für Funktionen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Grenzwertsätze für Funktionen kannst du es wiederholen und üben.
  • Berechne die Grenzwerte der angegebenen Funktionen.

    Tipps

    Verwende die Grenzwertsätze für Summen und Differenzen von Funktionen.

    1. $\lim\limits_{x \to \infty}(f(x)+g(x))=\lim\limits_{x \to \infty}f(x)+\lim\limits_{x \to \infty}g(x)=A+B$ sowie
    2. $\lim\limits_{x \to \infty}(f(x)-g(x))=\lim\limits_{x \to \infty}f(x)-\lim\limits_{x \to \infty}g(x)=A-B$

    Wogegen konvergiert die Funktion $\frac1x$, wenn x immer größer wird, also gegen $\infty$ geht?

    Lösung

    Du kannst die beiden Grenzwertsätze zu Summen und Differenzen von Funktionen verwenden:

    1. $\lim\limits_{x \to \infty}(f(x)+g(x))=\lim\limits_{x \to \infty}f(x)+\lim\limits_{x \to \infty}g(x)=A+B$ und
    2. $\lim\limits_{x \to \infty}(f(x)-g(x))=\lim\limits_{x \to \infty}f(x)-\lim\limits_{x \to \infty}g(x)=A-B$
    Die Funktion $\frac5{x^2}+3$ ist die Summe zweier Funktionen, also verwenden wir den 1. Grenzwertsatz.

    $\begin{align*} \lim\limits_{x \to \infty}\left( \frac5{x^2}+3\right)&=\lim\limits_{x \to \infty}\frac5{x^2}+\lim\limits_{x\to\infty}3\\ & = 0+3=3=A. \end{align*}$

    Durch den 2. Grenzwertsatz kann der Grenzwert B berechnet werden.

    $\begin{align*} \lim\limits_{x \to \infty}\left( 8-\frac1x\right)&=\lim\limits_{x \to \infty}8-\lim\limits_{x\to\infty}\frac1x\\ & = 0+3=3=B. \end{align*}$

    Wichtig an dieser Stelle ist, dass x und $x^2$ für $x\rightarrow \infty$ immer größer werden und somit sich die Kehrwerte $\frac{1}{x}$ und $\frac{5}{x^2}$ immer stärker an Null annähern.

  • Schildere die einzelnen Schritte zur Berechnung des Grenzwertes.

    Tipps

    Verwende die Grenzwertsätze:

    $\begin{align*} \lim\limits_{x \to \infty}(f(x)+g(x))&=\lim\limits_{x \to \infty}f(x)+\lim\limits_{x \to \infty}g(x)\\ \lim\limits_{x \to \infty}(f(x)-g(x))&=\lim\limits_{x \to \infty}f(x)-\lim\limits_{x \to \infty}g(x)\\ \lim\limits_{x \to \infty}(f(x) \cdot g(x))&=\lim\limits_{x \to \infty}f(x) \cdot \lim\limits_{x \to \infty}g(x)\\ \lim\limits_{x \to \infty}\left( \frac{f(x)}{g(x)}\right)&=\frac{\lim\limits_{x \to \infty}f(x)}{\lim\limits_{x \to \infty}g(x)} \end{align*}$

    Um die Grenzwertsätze anwenden zu können, müssen die entsprechenden Funktionen Grenzwerte besitzen. Bei dem Quotienten zweier Funktionen darf der Grenzwert des Nenners und auch die Nennerfunktion ab einem gewissen Funktionswert nicht 0 sein.

    Du musst also gegebenenfalls die Funktion umformen.

    Du wendest in diesem Beispiel die Regel zur Berechnung des Grenzwertes von Quotienten, Summen und Differenzen zweier Funktionen an.

    Lösung

    Um die Grenzwertsätze anwenden zu können, müssen die betrachteten Funktionen konvergieren, das heißt einen Grenzwert besitzen. Um dies zu erreichen, muss eine Funktion gegebenenfalls umgeformt werden.

    In diesem Beispiel wird der Bruch mit $\frac1{x^2}$ erweitert. Somit konvergiert sowohl die Funktion im Zähler als auch die im Nenner. Für die Berechnung des Grenzwertes im Zähler wird der Grenzwertsatz für Summen von Funktionen und im Nenner der Grenzwertsatz für Differenzen von Funktionen verwendet. Insgesamt sieht die Rechnung folgendermaßen aus:

    $\begin{align*} \lim\limits_{x\to\infty}\left(\frac{x^2+1}{2x^2-2}\right)&=\lim\limits_{x\to\infty}\left(\frac{\frac1{x^2}(x^2+1)}{\frac1{x^2}(2x^2-2)}\right)\\ &=\lim\limits_{x\to\infty}\left(\frac{1+\frac1{x^2}}{2-\frac2{x^2}}\right)\\ &=\frac{\lim\limits_{x\to\infty}\left(1+\frac1{x^2}\right)}{\lim\limits_{x\to\infty}\left(2-\frac2{x^2}\right)}\\ &=\frac{\lim\limits_{x\to\infty}1+\lim\limits_{x\to\infty}\frac1{x^2}}{\lim\limits_{x\to\infty}2-\lim\limits_{x\to\infty}\frac2{x^2}}\\ &=\frac{1+0}{2-0}=\frac12. \end{align*}$

  • Untersuche die Funktionen auf Konvergenz und gib die Grenzwerte für $x \to \infty$ an.

    Tipps

    Wende die Grenzwertsätze für die Berechnung von Grenzwerten von Summen, Differenzen, Produkten und Quotienten zweier Funktionen an.

    Du darfst verwenden, dass

    $\large{\lim\limits_{x\to\infty}\frac1{x^n}=0}$ für $n\in\mathbb{N}$ mit $n\neq 0$.

    Lösung

    In jedem der Beispiele wird einer der Grenzwertsätze verwendet.

    Der Grenzwert $\large{\lim\limits_{x\to \infty}\frac1{x^n}=0}$ für $n\in \mathbb{N}$ für $n\neq 0$ darf vorausgesetzt werden. Die Grenzwertsätze lauten im Einzelnen:

    $\begin{align*} &~~\lim\limits_{x \to \infty}(f(x)+g(x))=\lim\limits_{x \to \infty}f(x)+\lim\limits_{x \to \infty}g(x)\\ &~~\lim\limits_{x \to \infty}(f(x)-g(x))=\lim\limits_{x \to \infty}f(x)-\lim\limits_{x \to \infty}g(x)\\ &~~\lim\limits_{x \to \infty}(f(x) \cdot g(x))=\lim\limits_{x \to \infty}f(x) \cdot \lim\limits_{x \to \infty}g(x)\\ &~~\lim\limits_{x \to \infty}\left( \frac{f(x)}{g(x)}\right)=\frac{\lim\limits_{x \to \infty}f(x)}{\lim\limits_{x \to \infty}g(x)} \end{align*}$

    Diese können wir nun konkret anwenden:

    1. Es gilt $\lim\limits_{x\to\infty}\left(\frac2{x^3}+3\right)=\lim\limits_{x\to\infty}\frac2{x^3}+\lim\limits_{x\to\infty}3=0+3=3$ mit der Summenregel.
    2. Es gilt $\lim\limits_{x\to\infty}\left(\frac{-4}{x}-2\right)=\lim\limits_{x\to\infty}\frac{-4}{x}-\lim\limits_{x\to\infty}2=0-2=-2$ mit der Differenzregel.
    3. Es gilt $\lim\limits_{x\to\infty} \left(2\cdot \frac1{x^2} \right)=\lim\limits_{x\to\infty} 2 \cdot \lim\limits_{x\to\infty} \frac1{x^2}=2\cdot0=0$ mit der Produktregel.
    4. Die Grenzwerte der Funktionen f und g sind 3 beziehungsweise -2. Also gilt $\lim\limits_{x\to\infty} \frac{f(x)}{g(x)}=\frac{\lim\limits_{x\to\infty}f(x)}{\lim\limits_{x\to\infty}g(x)}=\frac3{-2}=-1,5$.
  • Ermittle den Grenzwert der angegebenen Funktion.

    Tipps

    Du kannst die Grenzwertsätze analog für $x\to x_0$ formulieren, indem du $x\to \infty$ durch $x\to x_0$ ersetzt.

    Wenn ein Grenzwert $\lim\limits_{x\to x_0}$ existiert, wobei $x_0$ eine Definitionslücke ist, so muss die betreffende Funktion zunächst umgeformt werden. In unserem Fall konvergiert $\frac{3}{x-1}$ für $x\to 1$ nicht gegen eine Zahl.

    Der Term $(x-1)$ im Nenner lässt sich kürzen.

    In diesem Fall spricht man von einer hebbaren Definitionslücke.

    Lösung

    Wenn x gegen 1 geht, dann geht der Nenner sowohl im Minuenden als auch im Subtrahenden gegen 0. So sind die Grenzwertsätze nicht anwendbar.

    Beide Brüche haben den gleichen Nenner, also können sie auch subtrahiert werden und dann fällt nach Ausklammern von 3 im Zähler auf, dass da die dritte binomische Formel verwendet werden kann:

    $\begin{align*} \lim\limits_{x\to1}\left(\frac{3x^2}{x-1}-\frac3{x-1} \right)&=\lim\limits_{x\to1}\left(\frac{3x^2-3}{x-1}\right)\\ &=\lim\limits_{x\to1}\left(\frac{3(x^2-1)}{x-1}\right)\\ &=\lim\limits_{x\to1}\left(\frac{3(x+1)(x-1)}{x-1}\right)\\ &=\lim\limits_{x\to1}3(x+1)=3\cdot2=6. \end{align*}$

    Der Term $(x-1)$ im Nenner lässt sich also kürzen und es existiert ein Grenzwert. Man spricht dann von einer hebbaren Definitionslücke. Andernfalls handelt es sich bei der Definitionslücke um eine Polstelle.

  • Ergänze die Grenzwertsätze für Funktionen.

    Tipps

    Mit den Grenzwertsätzen kannst du immer zuerst die Einzelgrenzwerte betrachten und im Anschluss den Grenzwert des Gesamtausdrucks bestimmen.

    Ein Beispiel: Für $\lim\limits_{x \to \infty}(2+\frac1x)$ gilt für die Einzelgrenwerte $\lim\limits_{x \to \infty}2=2$ und $\lim\limits_{x \to \infty}\frac1x=0$. Dann konvergiert die Funktion $f(x)=2+\frac1x$ gegen $2+0=2$.

    Lösung

    Die Grenzwertsätze für Funktionen bieten ein Handwerkszeug zur Berechnung von Grenzwerten. Dabei müssen die miteinander über die Grundrechenarten verknüpften Funktionen konvergent sein. Das heißt:

    $\begin{align*} \lim\limits_{x \to \infty} f(x)=A\\ \lim\limits_{x \to \infty} g(x)=B. \end{align*}$

    Die Grenzwertsätze gelten auch für die Berechnung der Grenzwerte $\lim\limits_{x\to -\infty}$ sowie $\lim\limits_{x\to x_0}$, wobei $x_0$ eine Definitionslücke ist. Die Grenzwertsätze lauten:

    1. $\lim\limits_{x \to \infty}(f(x)+g(x))=\lim\limits_{x \to \infty}f(x)+\lim\limits_{x \to \infty}g(x)=A+B$
    2. $\lim\limits_{x \to \infty}(f(x)-g(x))=\lim\limits_{x \to \infty}f(x)-\lim\limits_{x \to \infty}g(x)=A-B$
    3. $\lim\limits_{x \to \infty}(f(x) \cdot g(x))=\lim\limits_{x \to \infty}f(x) \cdot \lim\limits_{x \to \infty}g(x)=A \cdot B$
    4. $\lim\limits_{x \to \infty}\left( \frac{f(x)}{g(x)}\right)=\frac{\lim\limits_{x \to \infty}f(x)}{\lim\limits_{x \to \infty}g(x)}=\frac{A}{B}$ Hier muss zusätzlich noch gelten, dass sowohl die Werte der Nennerfunktion ab einer gewissen Wert als auch der Grenzwert ungleich 0 sind.
    Zusammengefasst kannst du den Grenzwert einer Summe von Funktionen als die Summe der Grenzwerte, den Grenzwert einer Differenz von Funktionen als die Differenz der Grenzwerte, den Grenzwert eines Produktes von Funktionen als das Produkt der Grenzwerte und den Grenzwert eines Quotienten von Funktionen als den Quotienten der Grenzwerte unter den oben angegebenen Voraussetzungen berechnen.

  • Untersuche in Abhängigkeit der Koeffizienten, wogegen die Funktion konvergiert.

    Tipps

    Erweitere den Bruch mit $\frac1{x^2}$. Somit erhältst du sowohl im Zäher als auch im Nenner eine Funktion mit einem Grenzwert.

    Sowohl den Zähler- als auch den Nennergrenzwert kannst du mit den Grenzwertsätzen berechnen.

    Der Grenzwert des Bruches ist dann der Quotient der Grenzwerte.

    Im Fall $d=0$ ist der Grenzwert im Nenner 0. Was bedeutet dies?

    Lösung

    Zur Berechnung des Grenzwertes der Funktion $\lim\limits_{x \to \infty}\left( \frac{a \cdot x^2+b\cdot x+c}{d\cdot x^2+e\cdot x+f}\right)$ muss zunächst der Bruch mit $\frac1{x^2}$ erweitert werden. Dadurch stehen sowohl im Zähler als auch im Nenner Funktionen, welche einen Grenzwert haben. Wir nutzen dabei die Summenregel und den Umstand, dass die Grenzwerte von $\frac{1}{x}$ und $\frac{1}{x^2}$ für $x\to \infty$ jeweils Null sind:

    $\begin{align*} \lim\limits_{x \to \infty}\left( \frac{a \cdot x^2+b\cdot x+c}{d\cdot x^2+e\cdot x+f}\right)&=\lim\limits_{x \to \infty}\left( \frac{\frac1{x^2}(a \cdot x^2+b\cdot x+c)}{\frac1{x^2}(d\cdot x^2+e\cdot x+f)}\right)\\ &=\lim\limits_{x \to \infty}\left( \frac{a +\frac bx+\frac c{x^2}}{d+\frac ex+\frac f{x^2}}\right)\\ &=\frac{\lim\limits_{x \to \infty}\left(a +\frac bx+\frac c{x^2}\right)}{\lim\limits_{x \to \infty}\left(d+\frac ex+\frac f{x^2}\right)}\\ &=\frac{\lim\limits_{x \to \infty}a +\lim\limits_{x \to \infty}\frac bx+\lim\limits_{x \to \infty}\frac c{x^2}}{\lim\limits_{x \to \infty}d+\lim\limits_{x \to \infty}\frac ex+\lim\limits_{x \to \infty}\frac f{x^2}}\\ &=\frac{a+0+0}{d+0+0}=\frac{a}{d} \end{align*}$

    Damit sind sowohl der 1. als auch der 3. Fall erklärt. Der Grenzwert ist $\frac ad$ im ersten Fall. Für den dritten Fall ist der Grenzwert gerade 0.

    Der zweite Fall mit $a\neq 0$ und $d=0$ würde im Nenner zu einem Grenzwert 0 führen. Die Funktion ist dann divergent. Allgemein gilt, dass die Funktion divergent ist, wenn der Zählergrad größer als der Nennergrad ist.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.044

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.922

Lernvideos

36.998

Übungen

34.261

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden