Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Graphische Darstellung bei Funktionen mit mehreren Veränderlichen – Beispiele

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Sei der Erste und gib eine Bewertung ab!
Die Autor*innen
Avatar
Frank Steiger
Graphische Darstellung bei Funktionen mit mehreren Veränderlichen – Beispiele
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Graphische Darstellung bei Funktionen mit mehreren Veränderlichen – Beispiele Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Graphische Darstellung bei Funktionen mit mehreren Veränderlichen – Beispiele kannst du es wiederholen und üben.
  • Gib an, welche der Darstellungen Höhenlinien oder Isoquanten der Funktion $f(x;y)=|x|+|y|$ sind.

    Tipps

    Höhenlinien, bei denen $x=x_0$ konstant ist, entsprechen einem Schnitt parallel zu der y-z-Ebene und bei $y=y_0$ einem Schnitt parallel zur x-z-Ebene.

    Isoquanten entsprechen

    • dem Blick auf die Fläche im Raum von oben oder
    • einem Schnitt parallel zur x-y-Ebene.

    Wenn $x=x_0$ konstant ist, dann ist

    $h(y)=f(x_0;y)=|x_0|+|y|$

    eine Betragsfunktion in $y$.

    Isoquante sind spezielle Höhenlinien.

    Lösung

    Wenn man die Höhenlinien für $x=x_0$ oder $y=y_0$ betrachtet, kann man sich dies als Schnitt durch die Fläche im Raum parallel zur xz- oder yz-Koordinatenebene vorstellen:

    • Sei $x=x_0$ konstant, dann entsteht eine Betragsfunktion im y-z-Koordinatensystem und
    • für $y=y_0$ konstant entsteht eine Betragsfunktion im x-z-Koordinatensystem.
    Die Isoquanten sind Schnitte durch die Fläche im Raum parallel zur x-y-Koordinatenebene. Die Isoquanten sind Quadrate.

  • Beschreibe die Höhenlinien der Funktion $f(x;y)=x^2-y^2$.

    Tipps

    Wenn man $y=y_0$ konstant wählt, bedeutet dies, dass man einen Schnitt parallel zur x-z-Koordinatenebene durchführt.

    Hält man nun $x=x_0$ konstant, bedeutet dies, dass man einen Schnitt parallel zur y-z-Koordinatenebene durchführt.

    Der Graph einer Funktion $f(x)=ax^2+bx+c$ ist eine Parabel:

    • Für $a>0$ ist die Parabel nach oben geöffnet und
    • für $a<0$ nach unten.
    Lösung

    Wenn man bei der Funktion $f(x;y)=x^2-y^2$ eine der beiden Variablen konstant wählt, erhält man die entsprechenden Höhenlinien.

    Wenn man $y=y_0$ konstant wählt, bedeutet dies, dass man einen Schnitt parallel zur x-z-Koordinatenebene durchführt.

    Bei dem abgebildeten hyperbolischen Paraboloid erhält man so eine nach oben geöffnete Normalparabel.

    Hält man nun $x=x_0$ konstant, bedeutet dies, dass man einen Schnitt parallel zur y-z-Koordinatenebene durchführt.

    Bei dem abgebildeten hyperbolischen Paraboloid erhält man so eine nach unten geöffnete Normalparabel.

  • Entscheide, welche der Darstellungen Isoquanten der Funktion $f(x;y)=x-y$ zeigen.

    Tipps

    Der Funktionswert der Funktion $f(x;y)$ ist die z-Koordinate.

    Die Isoquanten können als Schnitt durch das Paraboloid parallel zur x-y-Ebene verstanden werden.

    Alle geordneten Paare $(x|y)$, die die Gleichung

    $z_0=x-y$

    lösen, bilden Isoquante.

    Zum Beispiel erhältst du für $z_0=0$ die Gleichung $0=x-y$, welche äquivalent ist zu $y=x$.

    Lösung

    Wenn man bei der Gleichung $f(x;y)=x-y$ den Funktionswert $z=z_0$ konstant wählt, erhält man die Isoquanten:

    $z_0=x-y$.

    Addition von $y$ und Subtraktion von $z_0$ führen zu

    $y=x+z_0$.

    Der Graph zu dieser linearen Gleichung ist eine Gerade mit der Steigung $m=1$ und dem y-Achsenabschnitt $z_0$.

    Das bedeutet: Alle Isoquanten sind Geraden, welche parallel zu der Geraden mit $y=x$ verlaufen. Die Gleichung $y=x$ erhält man für $z=0$.

  • Beschreibe die Höhenlinien der Funktion.

    Tipps

    Setze jeweils den bekannten (konstanten) Wert in der Funktionsgleichung ein.

    Der Scheitelpunkt der Funktion

    $f(x)=a(x-x_s)^2+y_s$

    ist gegeben durch $S(x_s|y_s)$.

    Alle Parabeln werden ausschließlich entlang der z-Achse verschoben.

    Lösung

    Je nachdem, welche Veränderliche konstant gewählt wird, erhält man entweder nach oben oder nach unten geöffnete Normalparabeln.

    Für $x=x_0$ konstant erhält man immer eine nach unten geöffnete Normalparabel: $z=x_0^2-y^2$. Diese Normalparabel ist um $x_0^2$ Einheiten entlang der z-Achse nach oben verschoben. Die y-Koordinate des Scheitelpunktes ist immer $y=0$.

    • Für $x=0$ liegt der Scheitelpunkt in $y=0$ und $z=0$.
    • Für $x=4$ liegt der Scheitelpunkt in $y=0$ und $z=16$.
    Für $y=y_0$ konstant erhält man immer eine nach oben geöffnete Normalparabel: $z=x^2-y_0^2$. Diese Normalparabel ist um $y_0^2$ Einheiten entlang der z-Achse nach unten verschoben. Die x-Koordinate des Scheitelpunktes ist immer $x=0$.

    • Für $y=2$ liegt der Scheitelpunkt in $x=0$ und $z=-4$.
    • Für $y=-2$ liegt der Scheitelpunkt in $x=0$ und $z=-4$.
  • Beschreibe, was Isoquanten sind.

    Tipps

    Isoquanten entsprechen einer Sicht von oben auf die Fläche im Raum.

    Du kannst dir Isoquanten auch so vorstellen: Sie sind ein Schnitt durch die Fläche im Raum parallel zur x-y-Ebene.

    Eine Ebene, die zur x-y-Ebene parallel ist, hat eine feste z-Koordinate.

    Lösung

    Auch die Isoquanten sind Höhenlinien.

    Bei den Isoquanten wird weder $x$ noch $y$ konstant gehalten, sondern der Funktionswert $z=z_0$.

    Anschaulich bedeutet dies, dass man von oben auf den Funktionsgraphen schaut.

    Die Isoquanten der Funktion $f(x;y)=|x|+|y|$ sind Quadrate, deren gemeinsamer Mittelpunkt der Koordinatenursprung ist.

  • Prüfe die folgenden Aussagen.

    Tipps

    Dies ist das Paraboloid zu der Funktion $f(x;y)=x^2+2x+1+y^2=(x+1)^2+y^2$.

    Die Isoquanten dieser Funktion sind Kreise mit dem gemeinsamen Mittelpunkt $M(-1|0)$.

    Schaue dir die Funktion $f(x;y)=x^2+y^2$ an mit festem $z_0=4$.

    Dies führt zu der Gleichung $x^2+y^2=4$ oder, äquivalent dazu,

    $\sqrt{(x-0)^2+(y-0)^2}=2$.

    Dies ist ein Kreis mit dem Mittelpunkt $M(0|0)$ und dem Radius $r=2$.

    Du kannst dir die Isoquanten so vorstellen: Du machst einen Schnitt durch diesen Graphen parallel zur x-y-Ebene.

    Lösung

    Die Isoquanten sind diejenigen Kombinationen von $x$ und $y$, für die $f(x;y)=z_0$ gilt. Diese Gleichung kann nach $x$ oder nach $y$ umgeformt werden. Der Graph dieser umgeformten Gleichung wird Isoquant genannt.

    Die Isoquanten der Funktion $f(x;y)=|x|+|y|$ sind Quadrate. Alle diese Quadrate haben einen gemeinsamen Mittelpunkt, den Koordinatenursprung.

    Die Isoquanten der Funktion $f(x;y)=|x-1|+|y+2|$ sind ebenfalls Quadrate. Auch diese Quadrate haben einen gemeinsamen Mittelpunkt. Dieser ist um eine Einheit in positiver x-Richtung sowie um zwei Einheiten in negativer y-Richtung verschoben: $M(1|-2)$.

    Die Isoquanten der Funktion $f(x;y)=x^2+y^2$ sind Kreise. Auch diese haben einen gemeinsamen Mittelpunkt, den Koordinatenursprung $O(0|0)$.

    Die Isoquanten der Fuktion $f(x;y)=x^2+y^2-4y+4=x^2+(y-2)^2$ sind ebenfalls Kreise. Deren gemeinsamer Mittelpunkt ist $M(0|2)$.

    Der Mittelpunkt lässt sich in der Regel leicht bestimmen. Bei quadrierten Termen muss der quadrierte Term $0$ sein, bei Betragsstrichen muss innerhalb der Betragsstriche $0$ stehen.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.095

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.921

Lernvideos

37.010

Übungen

34.273

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden