Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Faktorisieren durch Zerlegen und Ausklammern

Beim Faktorisieren werden mathematische Ausdrücke vereinfacht, indem sie in ihre Primfaktoren zerlegt werden. In dem Text erfährst du, wie du Terme faktorisierst, indem du ausklammerst und zerlegst. Möchtest du mehr darüber wissen? Schau dir das Video zu den Binomischen Formeln an! Interessiert? Dies und noch vieles mehr kannst du im folgenden Text finden.

Inhaltsverzeichnis zum Thema Faktorisieren durch Zerlegen und Ausklammern
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.1 / 61 Bewertungen
Die Autor*innen
Avatar
Team Digital
Faktorisieren durch Zerlegen und Ausklammern
lernst du in der 7. Klasse - 8. Klasse - 9. Klasse - 10. Klasse

Faktorisieren durch Zerlegen und Ausklammern Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Faktorisieren durch Zerlegen und Ausklammern kannst du es wiederholen und üben.
  • Beschreibe, wie du ein Trinom in der allgemeinen quadratischen Form faktorisieren kannst.

    Tipps

    Ein Trinom in der allgemeinen quadratischen Form setzt sich aus den folgenden Gliedern zusammen:

    $\underbrace{ax^2}_{\text{quadratisch}}+\underbrace{bx}_{\text{linear}}+\underbrace{c}_{\text{absolut}}$.

    Möchten wir das Polynom $3x^2+5x-2$ faktorisieren, zerlegen wir $5x$ zunächst in $6x-1x$. Das Produkt der für die Zerlegung genutzten Werte entspricht $-6$.

    Lösung

    Adventure Mike möchte das Polynom $15x^2 + 9x - 6$ faktorisieren. Hierbei handelt es sich um ein Trinom in der allgemeinen quadratischen Form und Mike muss wie folgt vorgehen:

    • Um ein Polynom der Form $ax^2+bx+c$ zu faktorisieren, muss man diejenigen Faktoren des Produktes $ac$ finden, welche addiert $b$ ergeben.
    • Anschließend muss man das lineare Glied, also $bx$, mit den beiden gefundenen Werten zerlegen und mittels Klammern in zwei Binome gruppieren.
    • Dabei muss man beachten, dass die Terme so gruppiert sind, dass nach dem Ausklammern des größten gemeinsamen Teilers aus beiden Binomen der gleiche Rest in den Klammern übrig bleibt.
  • Gib die faktorisierte Form des Trinoms in der allgemeinen quadratischen Form an.

    Tipps

    Um ein Polynom der Form $ax^2+bx+c$ zu faktorisieren, muss man diejenigen Faktoren des Produktes $ac$ finden, welche addiert $b$ ergeben.

    Das lineare Glied, also $bx$, muss mit den beiden gefundenen Werten zerlegt und mittels Klammern in zwei Binome gruppiert werden.

    Lösung

    Um das Polynom $15x^2 + 9x - 6$ zu faktorisieren, gehen wir wie folgt vor:

    Zerlegung des linearen Glieds

    Zunächst suchen wir diejenigen Faktoren des Produktes $ac$, welche addiert $b$ ergeben. Diese benötigen wir, um das lineare Glied, also $bx$, geschickt zu zerlegen.

    Das Produkt aus $a=15$ und $c=-6$ entspricht $-90$. Da die Summe aus $a$ und $c$ bereits $b=9$ ist, müssen wir nicht lange suchen. Dies ist aber nicht immer der Fall! Unsere beiden Werte für die Zerlegung des linearen Glieds sind also $15$ und $-6$. Wir erhalten dann den folgenden Term:

    $15x^2-6x+15x-6$

    Gruppierung in Binome und Faktorisieren des Terms

    Mittels Klammern gruppieren wir diesen Term nun in zwei Binome. Dabei müssen wir beachten, dass die Terme so gruppiert sind, dass nach dem Ausklammern des größten gemeinsamen Teilers aus beiden Binomen der gleiche Rest in den Klammern übrig bleibt. Es folgt:

    $(15x^2-6x)+(15x-6)$

    Jetzt klammern wir aus diesen beiden Klammerausdrücken jeweils den größten gemeinsamen Teiler aus:

    $3x(5x-2)+3(5x-2)$

    Da wir hier eine Summe aus zwei Produkten mit einem gemeinsamen Faktor, nämlich $(5x-2)$, haben, können wir diesen ausklammern:

    $(3x+3)(5x-2)$

    Somit ist die gesuchte faktorisierte Form des gegebenen Trinoms in der allgemeinen quadratischen Form gefunden.

  • Ermittle den faktorisierten Term des gegebenen Trinoms in der allgemeinen quadratischen Form.

    Tipps

    Die gegebenen quadratischen Terme sind Trinome der Form $ax^2+bx+c$. Um diese zu faktorisieren, musst du zunächst das lineare Glied zerlegen.

    Finde hierzu zwei Werte, welche das Produkt $ac$ sowie die Summe $b$ liefern.

    Du kannst auch die faktorisierten Formen ausmultiplizieren und überprüfen, welchem Trinom der resultierende Term entspricht. Hierzu gehst du wie folgt vor:

    $ \begin{array}{rl} (3x-1)\cdot (x+2) & =3x\cdot x+3x\cdot 2-1\cdot x-1\cdot 2 \\ & =3x^2+6x-x-2 \\ & =3x^2+5x-2 \end{array} $

    Lösung

    Um ein Polynom der Form $ax^2+bx+c$ zu faktorisieren, gehen wir wie folgt vor:

    • Wir suchen diejenigen Faktoren des Produktes $ac$, welche addiert $b$ ergeben.
    • Wir zerlegen das lineare Glied, also $bx$, mit den beiden gefundenen Werten und gruppieren den resultierenden Term mittels Klammern in zwei Binome.
    Beispiel 1

    $ \begin{array}{rl} 2x^2-3x-5 & =2x^2+2x-5x-5 \\ & =(2x^2+2x)+(-5x-5) \\ & =2x(x+1)-5(x+1) \\ & =(2x-5)(x+1) \end{array} $

    Beispiel 2

    $ \begin{array}{rl} 10x^2-23x+12 & =10x^2-8x-15x+12 \\ & =(10x^2-8x)+(-15x+12) \\ & =2x(5x-4)-3(5x-4) \\ & =(2x-3)(5x-4) \end{array} $

    Beispiel 3

    $ \begin{array}{rl} x^2-3x+2 & =x^2-1x-2x+2 \\ & =(x^2-1x)+(-2x+2) \\ & =x(x-1)-2(x-1) \\ & =(x-2)(x-1) \end{array} $

    Beispiel 4

    $ \begin{array}{rl} -6x^2-12x-6 & =-6x^2-6x-6x-6 \\ & =(-6x^2-6x)+(-6x-6) \\ & =6x(-x-1)+6(-x-1) \\ & =(6x+6)(-x-1) \end{array} $

  • Bestimme die jeweiligen Linearfaktoren der faktorisierten Form des Trinoms.

    Tipps

    Die Faktoren der faktorisierten Form eines Terms nennt man Linearfaktoren. Ein Trinom in der allgemeinen quadratischen Form kannst du wie folgt faktorisieren, also in seine Linearfaktoren zerlegen:

    $ \begin{array}{rl} 2x^2+5x+2 & =2x^2+4x+x+2 \\ & =(2x^2+4x)+(x+2) \\ & =2x(x+2)+(x+2) \\ & =(2x+1)(x+2) \end{array} $

    Um das lineare Glied $bx$ eines quadratischen Terms der Form $ax^2+bx+c$ zu zerlegen, musst du zwei Werte finden, welche das Produkt $ac$ und die Summe $b$ liefern. Diese beiden Werte nutzt du dann für die Zerlegung von $bx$.

    Lösung

    Gegeben sind die folgenden Trinome in der allgemeinen quadratischen Form:

    • Trinom 1: $~2x^2+x-15$
    • Trinom 2: $~3x^2+4x-4$
    • Trinom 3: $~8x^2+6x-5$

    Diese sollen faktorisiert, also in ihre Linearfaktoren zerlegt werden. Hierzu gehen wir wie folgt vor:

    • Wir suchen zunächst zwei Werte, welche das Produkt $ac$ sowie die Summe $b$ liefern.
    • Anschließend zerlegen wir das lineare Glied mit den beiden gefundenen Werten und gruppieren den resultierenden Term mittels Klammern in zwei Binome.
    • Dabei beachten wir, dass die Terme so gruppiert sind, dass nach dem Ausklammern des größten gemeinsamen Teilers aus beiden Binomen der gleiche Rest in den Klammern übrig bleibt.

    Trinom 1

    $ \begin{array}{rl} 2x^2+x-15 & =2x^2+6x-5x-15 \\ & =(2x^2+6x)+(-5x-15) \\ & =2x(x+3)-5(x+3) \\ & =(2x-5)(x+3) \end{array} $

    Trinom 2

    $ \begin{array}{rl} 3x^2+4x-4 & =3x^2+6x-2x-4 \\ & =(3x^2+6x)+(-2x-4) \\ & =3x(x+2)-2(x+2) \\ & =(3x-2)(x+2) \end{array} $

    Trinom 3

    $ \begin{array}{rl} 8x^2+6x-5 & =8x^2+10x-4x-5 \\ & =(8x^2-4x)+(10x-5) \\ & =4x(2x-1)+5(2x-1) \\ & =(4x+5)(2x-1) \end{array} $

  • Bestimme die faktorisierte Form des gegebenen Trinoms.

    Tipps

    Du kannst das gegebene Trinom zerlegen und faktorisieren, um auf die Lösung zu kommen.

    Du kannst aber auch die vier gegebenen Terme in faktorisierter Form ausmultiplizieren, so weit wie möglich zusammenfassen und überprüfen, ob der resultierende Term dem gegebenen Trinom entspricht.

    Einen faktorisierten Term der Form $(a+b)\cdot (c+d)$ multiplizierst du wie folgt aus:

    $(a+b)\cdot (c+d)=ac+ad+bc+bd$

    Lösung

    Wir faktorisieren das Trinom $3x^2+5x-2$, indem wir wie folgendermaßen vorgehen:

    • Wir suchen zunächst diejenigen Faktoren des Produktes $ac$, welche addiert $b$ ergeben.
    • Anschließend zerlegen wir das lineare Glied, also $bx$, mit den beiden gefundenen Werten und gruppieren den resultierenden Term mittels Klammern in zwei Binome.
    • Dabei müssen wir beachten, dass die Terme so gruppiert sind, dass nach dem Ausklammern des größten gemeinsamen Teilers aus beiden Binomen der gleiche Rest in den Klammern übrig bleibt.

    Das Produkt aus $a=3$ und $c=-2$ entspricht $-6$. Alle Faktoren, die ebenfalls dieses Produkt liefern, sind in der folgenden Tabelle aufgelistet. In der zweiten Spalte der Tabelle ist die zugehörige Summe dieser beiden Faktoren zu finden:

    $ \begin{array}{c|c} \text{Faktoren von } -6 & \text{Summe der Faktoren} \\ \hline 1~ \text{und} ~ -6 & -5 \\ -1~ \text{und} ~ 6 & 5 \\ 2~ \text{und} ~ -3 & -1 \\ -2~ \text{und} ~ 3 & 1 \end{array} $

    Unserer Tabelle können wir die beiden Faktoren $-1$ und $6$ entnehmen, denn deren Summe entspricht dem Koeffizienten des linearen Glieds, nämlich $b=5$. Unsere beiden Werte für die Zerlegung des linearen Glieds sind also $-1$ und $6$. Wir erhalten dann diesen Term:

    $3x^2-x+6x-2$

    Mittels Klammern gruppieren wir den Term nun in zwei Binome:

    $(3x^2+6x)+(-x-2)$

    Jetzt klammern wir aus diesen beiden Klammerausdrücken jeweils den größten gemeinsamen Teiler aus:

    $3x(x+2)-1(x+2)$

    Da wir hier eine Summe aus zwei Produkten mit einem gemeinsamen Faktor, nämlich $(x+2)$, haben, können wir diesen ausklammern:

    $(3x-1)(x+2)$

    Somit ist die gesuchte faktorisierte Form des gegebenen Trinoms in der allgemeinen quadratischen Form gefunden.

    Alternativ hättest du auch alle vier gegebenen faktorisierten Terme ausmultiplizieren, zusammenfassen und daraufhin überprüfen können, ob der resultierende Term dem gegebenen Trinom entspricht.

  • Leite durch Faktorisieren des gegebenen Trinoms die dritte binomische Formel her.

    Tipps

    Da im Ausgangsterm kein lineares Glied vorhanden ist, beträgt dieses $0x$.

    Du gehst von der allgemeinen quadratischen Form $ax^2+bx+c$ aus und ermittelst zwei Faktoren des Produktes $ac$ so, dass deren Summe gleich $b$, also $0$, ist.

    Lösung

    Kennt man die dritte binomische Formel, so weiß man, dass $x^2-16=(x+4)(x-4)$ ist. Diesen Zusammenhang kann man sich aber auch schnell selbst herleiten.

    Hierzu faktorisieren wir den gegebenen Term, indem wir diesen zunächst zerlegen. Dabei wählen wir die Faktoren des Produktes $1\cdot (-16)=-16$ so, dass diese addiert den Koeffizienten des linearen Glieds ergeben. Da wir hier allerdings kein lineares Glied haben, ist dieser Koeffizient gleich null.

    Lass uns zunächst schauen, welche Faktoren für das Produkt $-16$ infrage kommen. Diese sind in der folgenden Tabelle aufgeführt:

    $ \begin{array}{c|c} \text{Faktoren von } -16 & \text{Summe der Faktoren} \\ \hline 1~ \text{und} ~ -16 & -15 \\ -1~ \text{und} ~ 16 & 15 \\ 2~ \text{und} ~ -8 & -6 \\ -2~ \text{und} ~ 8 & 6 \\ 4~ \text{und} ~ -4 & 0\\ \end{array} $

    Für die Werte $4$ und $-4$ erhalten wir das Produkt $-16$ und die Summe $0$. Also sind diese die gesuchten Werte. Wir zerlegen nun unser lineares Glied wie folgt:

    $x^2+4x-4x-16$

    Jetzt gruppieren wir diesen Term mittels Klammern in zwei Binome und klammern aus:

    $ \begin{array}{rl} =& (x^2+4x)+(-4x-16) \\ =& x(x+4)-4(x+4) \\ =& (x-4)(x+4) \end{array} $