30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Faktorisieren durch Zerlegen und Ausklammern 04:08 min

Textversion des Videos

Transkript Faktorisieren durch Zerlegen und Ausklammern

Adventure Mike und seine Freundin wollen ein Baumhaus bauen. Mit Hilfe einer Schlange als Maßband findet Mike das Polynom, das für die Gesamtfläche steht. Oh je, jetzt möchte seine Freundin auch noch einen Balkon haben, um den Sonnenuntergang zu beobachten. Sie ist von der romantischen Sorte. Mike will nicht noch mal alles neu ausmessen. Stattdessen will er das Polynom durch Zerlegen und Ausklammern faktorisieren. Schauen wir uns den Ausdruck an: 15x² + 9x – 6. Hm. Sieht vertraut aus, oder? Der Ausdruck hat die Form eines allgemeinen quadratischen Polynoms. ax² + bx + c. Es handelt sich um ein Trinom und a ist ungleich 1. Wie kann Mike diesen Ausdruck faktorisieren, um die Seitenlängen des Baumhauses herauszufinden? Um zu lernen, wie man durch Zerlegen und Ausklammern faktorisiert, schauen wir uns erst mal ein anderes Beispiel an. Dabei fangen wir mit dem Ergebnis an, dass wir nach dem Faktorisieren erhalten wollen, also mit zwei Binomen. Diese multiplizieren wir und erhalten den Ausdruck 3x2 + 6x – x – 2. Achte auf die hervorgehobenen Terme, diese können zusammengefasst werden. Nach dem Zusammenfassen, erhalten wir ein Trinom in der allgemeinen quadratischen Form, bei dem a ungleich 1 ist. Also genau die Form, die das Polynom hat, das Mike faktorisieren will. Wie gelangen wir also zur faktorisierten Form für a ungleich 1? Mit einem kleinen Kniff: Wir müssen die Faktoren des Produktes ac finden, die addiert b ergeben. a = 15 und c = -6, also ist ac = -90. Hier haben wir eine Liste mit Faktoren, die multipliziert -90 ergeben. Findest du die beiden Faktoren, die addiert 9 ergeben? [kleine Pause] Richtig! -6 und 15 ergeben multipliziert -90 und addiert 9. Den x-Term, 9x, können wir mit den gefundenen Werten zerlegen in -6x + 15x, da -6x + 15x ja 9x ergibt. Kommt dir das bekannt vor? Es ist die Form des Anfangsbeispieles, bei der die gleichartigen Terme noch nicht zusammengefasst wurden. Nutze nun Klammern, um die vier Terme zu zwei Binomen zu gruppieren.Das ist etwas knifflig, denn du musst die Terme so gruppieren, dass nach Ausklammern des größten gemeinsamen Teilers aus beiden Binomen, der gleiche Rest in den Klammern übrig bleibt. Achte auf die Vorzeichen Nun kann man in Klammern 5x-2 ausklammern. Übrig bleibt dann in Klammern 3x + 3. Endlich, das Polynom ist faktorisiert. Und Adventure Mike hat die Maße für die beiden Seiten des Baumhauses. Wenn seine Freundin ein größeres Baumhaus will, muss er einfach nur die Länge der Seiten anpassen. Geschafft! Das Baumhaus ist endlich fertig. Mike will diesen Moment auf einem Foto festhalten. Oh oh. Vielleicht war Mike ein kleines bisschen zu lange allein im Dschungel?

1 Kommentar
  1. Erinnert mich an Saison/Season(keine Ahnung welches richtig ist)

    Von Mebea N., vor 9 Monaten

Faktorisieren durch Zerlegen und Ausklammern Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Faktorisieren durch Zerlegen und Ausklammern kannst du es wiederholen und üben.

  • Beschreibe, wie du ein Trinom in der allgemeinen quadratischen Form faktorisieren kannst.

    Tipps

    Ein Trinom in der allgemeinen quadratischen Form setzt sich aus den folgenden Gliedern zusammen:

    $\underbrace{ax^2}_{\text{quadratisch}}+\underbrace{bx}_{\text{linear}}+\underbrace{c}_{\text{absolut}}$.

    Möchten wir das Polynom $3x^2+5x-2$ faktorisieren, so zerlegen wir $5x$ zunächst in $6x-1x$. Das Produkt der für die Zerlegung genutzten Werte entspricht $-6$.

    Lösung

    Adventure Mike möchte das Polynom $15x^2 + 9x - 6$ faktorisieren. Hierbei handelt es sich um ein Trinom in der allgemeinen quadratischen Form und Mike muss wie folgt vorgehen:

    • Um ein Polynom der Form $ax^2+bx+c$ zu faktorisieren, muss man diejenigen Faktoren des Produktes $ac$ finden, welche addiert $b$ ergeben.
    • Anschließend muss man das lineare Glied, also $bx$, mit den beiden gefundenen Werten zerlegen und mittels Klammern in zwei Binome gruppieren.
    • Dabei muss man beachten, dass die Terme so gruppiert sind, dass nach Ausklammern des größten gemeinsamen Teilers aus beiden Binomen der gleiche Rest in den Klammern übrig bleibt.
  • Bestimme die faktorisierte Form des gegebenen Trinoms.

    Tipps

    Du kannst das gegebene Trinom zerlegen und faktorisieren, um auf die Lösung zu kommen.

    Du kannst aber auch die vier gegebenen Terme in faktorisierter Form ausmultiplizieren, so weit wie möglich zusammenfassen und überprüfen, ob der resultierende Term dem gegebenen Trinom entspricht.

    Einen faktorisierten Term der Form $(a+b)\cdot (c+d)$ multiplizierst du wie folgt aus:

    $(a+b)\cdot (c+d)=ac+ad+bc+bd$.

    Lösung

    Wir faktorisieren das Trinom $3x^2+5x-2$, indem wir wie folgt vorgehen:

    • Wir suchen zunächst diejenigen Faktoren des Produktes $ac$, welche addiert $b$ ergeben.
    • Anschließend zerlegen wir das lineare Glied, also $bx$, mit den beiden gefundenen Werten und gruppieren den resultierenden Term mittels Klammern in zwei Binome.
    • Dabei müssen wir beachten, dass die Terme so gruppiert sind, dass nach Ausklammern des größten gemeinsamen Teilers aus beiden Binomen der gleiche Rest in den Klammern übrig bleibt.
    Das Produkt aus $a=3$ und $c=-2$ entspricht $-6$. Alle Faktoren, die ebenfalls dieses Produkt liefern, sind in der folgenden Tabelle aufgelistet. In der zweiten Spalte der Tabelle ist die zugehörige Summe dieser beiden Faktoren zu finden:

    $ \begin{array}{c|c} \text{Faktoren von } -6 & \text{Summe der Faktoren} \\ \hline 1;\ -6 & -5 \\ -1;\ 6 & 5 \\ 2;\ -3 & -1 \\ -2;\ 3 & 1 \end{array} $

    Unserer Tabelle können wir die beiden Faktoren $-1$ und $6$ entnehmen, denn deren Summe entspricht dem Koeffizienten des linearen Glieds, nämlich $b=5$. Unsere beiden Werte für die Zerlegung des linearen Glieds sind also $-1$ und $6$. Wir erhalten dann den folgenden Term:

    $3x^2-x+6x-2$.

    Mittels Klammern gruppieren wir diesen Term nun in zwei Binome:

    $(3x^2+6x)+(-x-2)$.

    Nun klammern wir aus diesen beiden Klammerausdrücken jeweils den größten gemeinsamen Teiler aus:

    $3x(x+2)-1(x+2)$.

    Da wir hier eine Summe aus zwei Produkten mit einem gemeinsamen Faktor, nämlich $(x+2)$, haben, können wir diesen ausklammern:

    $(3x-1)(x+2)$.

    Somit ist die gesuchte faktorisierte Form des gegebenen Trinoms in der allgemeinen quadratischen Form gefunden!

    Du hättest natürlich auch alle vier gegebenen faktorisierten Terme ausmultiplizieren, zusammenfassen und daraufhin überprüfen können, ob der resultierende Term dem gegebenen Trinom entspricht.

  • Gib die faktorisierte Form des Trinoms in der allgemeinen quadratischen Form an.

    Tipps

    Um ein Polynom der Form $ax^2+bx+c$ zu faktorisieren, muss man diejenigen Faktoren des Produktes $ac$ finden, welche addiert $b$ ergeben.

    Das lineare Glied, also $bx$, muss mit den beiden gefundenen Werten zerlegt und mittels Klammern in zwei Binome gruppiert werden.

    Lösung

    Um das Polynom $15x^2 + 9x - 6$ zu faktorisieren gehen wir wie folgt vor:

    Zerlegung des linearen Glieds

    Zunächst suchen wir diejenigen Faktoren des Produktes $ac$, welche addiert $b$ ergeben. Diese benötigen wir, um das lineare Glied, also $bx$, geschickt zu zerlegen.

    Das Produkt aus $a=15$ und $c=-6$ entspricht $-90$. Da die Summe aus $a$ und $c$ bereits $b=9$ ist, müssen wir nicht lange suchen. Das ist aber nicht immer der Fall! Unsere beiden Werte für die Zerlegung des linearen Glieds sind also $15$ und $-6$. Wir erhalten dann den folgenden Term:

    $15x^2-6x+15x-6$.

    Gruppierung in Binome und Faktorisieren des Terms

    Mittels Klammern gruppieren wir diesen Term nun in zwei Binome. Dabei müssen wir beachten, dass die Terme so gruppiert sind, dass nach Ausklammern des größten gemeinsamen Teilers aus beiden Binomen der gleiche Rest in den Klammern übrig bleibt. Es folgt:

    $(15x^2-6x)+(15x-6)$.

    Nun klammern wir aus diesen beiden Klammerausdrücken jeweils den größten gemeinsamen Teiler aus:

    $3x(5x-2)+3(5x-2)$.

    Da wir hier eine Summe aus zwei Produkten mit einem gemeinsamen Faktor, nämlich $(5x-2)$, haben, können wir diesen ausklammern:

    $(3x+3)(5x-2)$.

    Somit ist die gesuchte faktorisierte Form des gegebenen Trinoms in der allgemeinen quadratischen Form gefunden!

  • Leite durch Faktorisieren des gegebenen Trinoms die dritte binomische Formel her.

    Tipps

    Da im Ausgangsterm kein lineares Glied vorhanden ist, beträgt dieses $0x$.

    Du gehst von der allgemeinen quadratischen Form $ax^2+bx+c$ aus und ermittelst zwei Faktoren des Produktes $ac$ so, dass deren Summe gleich $b$, also $0$ ist.

    Lösung

    Kennt man die dritte binomische Formel, so weiß man, dass $x^2-16=(x+4)(x-4)$ ist.

    Diesen Zusammenhang kann man sich aber auch schnell selbst herleiten. Hierzu faktorisieren wir den gegebenen Term, indem wir diesen zunächst zerlegen. Dabei wählen wir die Faktoren des Produktes $1\cdot (-16)=-16$ so, dass diese addiert den Koeffizienten des linearen Glieds ergeben. Da wir hier allerdings kein lineares Glied haben, ist dieser Koeffizient gleich null.

    Lass uns zunächst schauen, welche Faktoren für das Produkt $-16$ in Frage kommen. Diese sind in der folgenden Tabelle aufgeführt:

    $ \begin{array}{c|c} \text{Faktoren von } -16 & \text{Summe der Faktoren} \\ \hline 1;\ -16 & -15 \\ -1;\ 16 & 15 \\ 2;\ -8 & -6 \\ -2;\ 8 & 6 \\ 4;\ -4 & 0\\ \end{array} $

    Für die Werte $4$ und $-4$ erhalten wir das Produkt $-16$ und die Summe $0$. Also sind diese die gesuchten Werte. Wir zerlegen nun unser lineares Glied wie folgt:

    $x^2+4x-4x-16$.

    Nun gruppieren wir diesen Term mittels Klammern in zwei Binome und klammern aus:

    $ \begin{array}{rl} =& (x^2+4x)+(-4x-16) \\ =& x(x+4)-4(x+4) \\ =& (x-4)(x+4) \end{array} $

  • Ermittle den faktorisierten Term des gegebenen Trinoms in der allgemeinen quadratischen Form.

    Tipps

    Die gegebenen quadratischen Terme sind Trinome der Form $ax^2+bx+c$. Um diese zu faktorisieren, musst du zunächst das lineare Glied zerlegen.

    Finde hierzu zwei Werte, welche das Produkt $ac$ sowie die Summe $b$ liefern.

    Du kannst auch die faktorisierten Formen ausmultiplizieren und überprüfen, welchem Trinom der resultierende Term entspricht. Hierzu gehst du wie folgt vor:

    $ \begin{array}{rl} (3x-1)\cdot (x+2) & =3x\cdot x+3x\cdot 2-1\cdot x-1\cdot 2 \\ & =3x^2+6x-x-2 \\ & =3x^2+5x-2 \end{array} $

    Lösung

    Um ein Polynom der Form $ax^2+bx+c$ zu faktorisieren, gehen wir wie folgt vor:

    • Wir suchen diejenigen Faktoren des Produktes $ac$, welche addiert $b$ ergeben.
    • Wir zerlegen das lineare Glied, also $bx$, mit den beiden gefundenen Werten und gruppieren den resultierenden Term mittels Klammern in zwei Binome.
    Beispiel 1

    $ \begin{array}{rl} 2x^2-3x-5 & =2x^2+2x-5x-5 \\ & =(2x^2+2x)+(-5x-5) \\ & =2x(x+1)-5(x+1) \\ & =(2x-5)(x+1) \end{array} $

    Beispiel 2

    $ \begin{array}{rl} 10x^2-23x+12 & =10x^2-8x-15x+12 \\ & =(10x^2-8x)+(-15x+12) \\ & =2x(5x-4)-3(5x-4) \\ & =(2x-3)(5x-4) \end{array} $

    Beispiel 3

    $ \begin{array}{rl} x^2-3x+2 & =x^2-1x-2x+2 \\ & =(x^2-1x)+(-2x+2) \\ & =x(x-1)-2(x-1) \\ & =(x-2)(x-1) \end{array} $

    Beispiel 4

    $ \begin{array}{rl} -6x^2-12x-6 & =-6x^2-6x-6x-6 \\ & =(-6x^2-6x)+(-6x-6) \\ & =6x(-x-1)+6(-x-1) \\ & =(6x+6)(-x-1) \end{array} $

  • Bestimme die jeweiligen Linearfaktoren der faktorisierten Form des Trinoms.

    Tipps

    Die Faktoren der faktorisierten Form eines Terms nennt man Linearfaktoren. Ein Trinom in der allgemeinen quadratischen Form kannst du wie folgt faktorisieren, also in seine Linearfaktoren zerlegen:

    $ \begin{array}{rl} 2x^2+5x+2 & =2x^2+4x+x+2 \\ & =(2x^2+4x)+(x+2) \\ & =2x(x+2)+(x+2) \\ & =(2x+1)(x+2) \end{array} $

    Um das lineare Glied $bx$ eines quadratischen Terms der Form $ax^2+bx+c$ zu zerlegen, musst du zwei Werte finden, welche das Produkt $ac$ und die Summe $b$ liefern. Diese beiden Werte nutzt du dann für die Zerlegung von $bx$.

    Lösung

    Gegeben sind die folgenden Trinome in der allgemeinen quadratischen Form:

    Trinom 1: $~2x^2+x-15$,
    Trinom 2: $~3x^2+4x-4$ und
    Trinom 3: $~8x^2+6x-5$.

    Diese sollen faktorisiert, also in ihre Linearfaktoren zerlegt werden. Hierzu gehen wir wie folgt vor:

    • Wir suchen zunächst zwei Werte, welche das Produkt $ac$ sowie die Summe $b$ liefern.
    • Anschließend zerlegen wir das lineare Glied mit den beiden gefundenen Werten und gruppieren den resultierenden Term mittels Klammern in zwei Binome.
    • Dabei beachten wir, dass die Terme so gruppiert sind, dass nach Ausklammern des größten gemeinsamen Teilers aus beiden Binomen der gleiche Rest in den Klammern übrig bleibt.
    Trinom 1

    $ \begin{array}{rl} 2x^2+x-15 & =2x^2+6x-5x-15 \\ & =(2x^2+6x)+(-5x-15) \\ & =2x(x+3)-5(x+3) \\ & =(2x-5)(x+3) \end{array} $

    Trinom 2

    $ \begin{array}{rl} 3x^2+4x-4 & =3x^2+6x-2x-4 \\ & =(3x^2+6x)+(-2x-4) \\ & =3x(x+2)-2(x+2) \\ & =(3x-2)(x+2) \end{array} $

    Trinom 3

    $ \begin{array}{rl} 8x^2+6x-5 & =8x^2+10x-4x-5 \\ & =(8x^2-4x)+(10x-5) \\ & =4x(2x-1)+5(2x-1) \\ & =(4x+5)(2x-1) \end{array} $