30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Bernoulli-Experimente – Beispiele zu vierstufigen Zufallsexperimenten

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Lucy lernt 5 Minuten 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Lucy übt 5 Minuten 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    89%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Lucy stellt fragen 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
30 Tage kostenlos testen

Testphase jederzeit online beenden

Bewertung

Ø 5.0 / 3 Bewertungen

Die Autor*innen
Avatar
Mandy F.
Bernoulli-Experimente – Beispiele zu vierstufigen Zufallsexperimenten
lernst du in der 9. Klasse - 10. Klasse - 11. Klasse - 12. Klasse - 13. Klasse

Grundlagen zum Thema Bernoulli-Experimente – Beispiele zu vierstufigen Zufallsexperimenten

Hallo, in diesem Video geht es um Bernoulli-Experimente. Bisher haben wir Bernoulli-Experimente mit 3 Stufen betrachtet. In diesem Video wird dir anhand eines Beispiels nun gezeigt, wie man Wahrscheinlichkeiten zu Bernoulli-Experimenten mit 4 Stufen berechnet. Als Erstes erhältst du eine kleine Wiederholung zur Definition eines Bernoulli-Experimentes und zur Bernoulli-Formel. Anschließend erarbeiten wir uns die gegebenen und gesuchten Größen aus dem Beispiel, um die Aufgabe schrittweise zu lösen. Viel Spaß!

1 Kommentar

1 Kommentar
  1. Super Video - wie immer sehr sehr gut erklärt. Über Deinen Weg, bin ich übrigens auf den Trichter mit dem Binomialkoeffizienten gekommen, genauer, WAS genau er eigentlich AUSDRÜCKT: Ich wurde durch diese Videos inspiriert zu folgendem "Experiment", nämlich mein Baumdiagramm einfach einmal um 90° im UZS zu drehen und siehe da: Die Systematik eines Pascal'schen Dreieck, sprich das graphische Darstellen der Binomialverteilung trat vor mein Auge. Mir war nämlich - letztlich auch und gerade durch Deine sehr schönen Videos! - klargeworden, dass also sich aus dem Binomialkoeffizienten de facto nichts anderes ergeben kann, als JENER FAKTOR, der ausdrückt, WIE OFT die Pfade der GLEICHEN Ereignisse oder die Tupel ADDIERT werden müssen. m+m+m ist eben 3m - so wahr die Multiplikation, nichts anderes sein möchte, als die verkürzten Addition. So einfach ist das. Aber das GENIALE ist eben immer im Urgrund EINFACH, will sagen: Folgt einem EINFACHEN aber GENIALEN Prinzip. Vielen Tausend Dank und bitte mach weiter ...

    Von Masser Perrperll, vor 6 Monaten
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

3.649

sofaheld-Level

6.574

vorgefertigte
Vokabeln

10.814

Lernvideos

43.817

Übungen

38.543

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden