Skalare Multiplikation – Vielfache von Vektoren

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Skalare Multiplikation – Vielfache von Vektoren Übung
-
Berechne die skalaren Multiplikationsaufgaben.
TippsBei der skalaren Multiplikation multiplizieren wir einen Vektor mit einem Skalar $r$, indem wir jede Koordinate des Vektors mit dem Skalar multiplizieren:
$r \cdot \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} r \cdot a \\ r \cdot b \end{pmatrix}$
Achte auf die richtigen Vorzeichen.
LösungDurch die skalare Multiplikation wird die Länge des Vektors verändert. Beispielsweise ist beim Verdoppeln eines Vektors der neue Vektor zweimal so lang.
Konkret multiplizieren wir einen Vektor mit einem Skalar, also einer Zahl, indem wir jede Vektorkoordinate mit der Zahl multiplizieren:
$r \cdot \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} r \cdot a \\ r \cdot b \end{pmatrix}$Somit ergibt sich für die gegebenen skalaren Multiplikationen:
1) $\quad 0,\!5 \cdot \begin{pmatrix} 2 \\ -4 \end{pmatrix} = \begin{pmatrix} 0,\!5 \cdot 2 \\ 0,\!5 \cdot (-4) \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$
2)$\quad 4 \cdot \begin{pmatrix} 0,\!25 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \cdot 0,\!25 \\ 4 \cdot (-1) \end{pmatrix} = \begin{pmatrix} 1 \\ -4 \end{pmatrix}$
3)$\quad -1\cdot \begin{pmatrix} 2 \\ -0,\!5 \end{pmatrix} = \begin{pmatrix} -1 \cdot 2 \\ -1 \cdot (-0,\!5) \end{pmatrix} = \begin{pmatrix} -2 \\ 0,\!5 \end{pmatrix}$
4)$\quad -\dfrac{1}{4} \cdot \begin{pmatrix} 4 \\ -2 \end{pmatrix} = \begin{pmatrix} -\frac{1}{4} \cdot 4 \\ -\frac{1}{4} \cdot (-2) \end{pmatrix} = \begin{pmatrix} -1 \\ 0,\!5 \end{pmatrix}$
5)$\quad 2\cdot \begin{pmatrix} -1 \\ 0,\!5 \end{pmatrix} = \begin{pmatrix} 2 \cdot (-1) \\ 2 \cdot 0,\!5 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$
-
Beschreibe die skalare Multiplikation von Vektoren.
TippsBeispiel:
$1,\!5 \cdot \begin{pmatrix} 4 \\ 6 \\ -2 \end{pmatrix} = \begin{pmatrix} 6 \\ 9\\ -3 \end{pmatrix}$
Multiplizieren wir mit einer Zahl, deren Betrag größer als $1$ ist, so verlängert sich der Vektor.
LösungEin Vektor wird durch einen Pfeil dargestellt, der durch seine Länge und Richtung eindeutig bestimmt ist.
Durch die skalare Multiplikation wird die Länge des Vektors verändert. Beispielsweise ist beim Verdoppeln eines Vektors der neue Vektor zweimal so lang.
Allgemein gilt:
- Multiplizieren wir mit einer Zahl, deren Betrag größer als $1$ ist, so verlängert sich der Vektor (Streckung).
- Multiplizieren wir mit einer Zahl, deren Betrag kleiner als $1$ ist, so verkürzt sich der Vektor (Stauchung).
- Multiplizieren wir mit einer negativen Zahl, so kehrt sich die Richtung des Vektors um.
Beispiel:
Wir multiplizieren den Vektor $\begin{pmatrix} 4 \\ 6 \\ -2 \end{pmatrix}$ mit der Zahl $0,\!5$. Wir rechnen:
$0,\!5 \cdot \begin{pmatrix} 4 \\ 6 \\ -2 \end{pmatrix} = \begin{pmatrix} 0,\!5 \cdot4 \\ 0,\!5 \cdot6 \\ 0,\!5 \cdot (-2) \end{pmatrix} = \begin{pmatrix} 2 \\ 3\\ -1 \end{pmatrix}$
Der Vektor wurde dadurch verkürzt und seine Richtung wurde beibehalten.
-
Bestimme den Faktor der skalaren Multiplikation.
TippsDu kannst den Faktor bestimmen, indem du die eine Vektorkoordinate des Ergebnisses durch eine Vektorkoordinate des vorderen Vektors teilst.
$5 \cdot \begin{pmatrix} 1 \\ 4\\ 3 \end{pmatrix} = \begin{pmatrix} 5 \\ 20\\ 15 \end{pmatrix}$, weil $5:1=5$ und $20:4=5$ und $15:3=5$
LösungWir multiplizieren einen Vektor mit einem Skalar, also einer Zahl, indem wir jede Vektorkoordinate mit der Zahl multiplizieren. Wir können also andersherum den Faktor bestimmen, indem wir die eine Vektorkoordinate des Ergebnisses durch eine Vektorkoordinate des vorderen Vektors teilen.
Somit ergibt sich:
- $2:1=2$ und $6:3=2$ und $-4:(-2)=2$
- $6:(-2)=-3$ und $-12:4=-3$ und $-1,\!5:0,\!5=-3$
- $1:5=0,\!2$ und $-2:(-10)=0,\!2$
- $-1:2=-0,\!5$ und $-2:4=-0,\!5$
-
Entscheide, welche Vektoren parallel sind.
TippsZwei Vektoren sind genau dann parallel, wenn sie skalare Vielfache voneinander sind.
Beispiel:
$\begin{pmatrix} 5 \\ 3\\ 1\end{pmatrix} \uparrow \uparrow \begin{pmatrix} 15 \\ 9\\ 3\end{pmatrix} $, da $\begin{pmatrix} 5 \\ 3\\ 1\end{pmatrix} \cdot 3 = \begin{pmatrix} 15 \\ 9\\ 3\end{pmatrix}$.
LösungVektoren sind durch ihre Länge und Richtung definiert. Vektoren sind nicht ortsgebunden. Zwei Vektoren sind genau dann parallel ($\uparrow \uparrow$ oder $\uparrow \downarrow$), wenn sie skalare Vielfache voneinander sind. Wir unterscheiden zwischen $\uparrow \uparrow$ und $\uparrow \downarrow$, je nach dem, ob die beiden Vektoren in die gleiche Richtung zeigen oder nicht.
Wir müssen also für jeden Vektor prüfen, von welchem gegebenen Vektor er ein Vielfaches ist. Somit ergibt sich:
$ \begin{pmatrix} 2 \\ 0\\ -4\end{pmatrix} \uparrow \uparrow \color{lightskyblue}{\begin{pmatrix} 1 \\ 0\\ -2\end{pmatrix}}$, da $ \begin{pmatrix} 2 \\ 0\\ -4\end{pmatrix} \cdot 0,\!5 = \begin{pmatrix} 1 \\ 0\\ -2\end{pmatrix}$.
$ \begin{pmatrix} 2 \\ 0\\ -4\end{pmatrix} \uparrow \uparrow \color{lightskyblue}{\begin{pmatrix} 3 \\ 0\\ -6\end{pmatrix}}$, da $ \begin{pmatrix} 2 \\ 0\\ -4\end{pmatrix} \cdot \frac{3}{2} = \begin{pmatrix} 3 \\ 0\\ -6\end{pmatrix}$.
$ \begin{pmatrix} 2 \\ 0\\ -4\end{pmatrix} \uparrow \uparrow \color{lightskyblue}{\begin{pmatrix} 0,\!5 \\ 0\\ -1\end{pmatrix}}$, da $ \begin{pmatrix} 2 \\ 0\\ -4\end{pmatrix} \cdot 0,\!25 = \begin{pmatrix} 0,\!5 \\ 0\\ -1\end{pmatrix}$.
$\begin{pmatrix} -1 \\ 0\\ 3\end{pmatrix} \uparrow \uparrow \color{violet}{\begin{pmatrix} -2 \\ 0\\ 6\end{pmatrix}}$, da $\begin{pmatrix} -1 \\ 0\\ 3\end{pmatrix} \cdot 2 = \begin{pmatrix} -2 \\ 0\\ 6\end{pmatrix}$.
$\begin{pmatrix} -1 \\ 0\\ 3\end{pmatrix} \uparrow \uparrow \color{violet}{\begin{pmatrix} -3 \\ 0\\ 9\end{pmatrix}} $, da $\begin{pmatrix} -1 \\ 0\\ 3\end{pmatrix} \cdot 3 = \begin{pmatrix} -3 \\ 0\\ 9\end{pmatrix}$.
$\begin{pmatrix} 3 \\ 2\\ 1\end{pmatrix} \uparrow \downarrow \color{gold}{\begin{pmatrix} -1,\!5 \\ -1\\ -0,\!5\end{pmatrix}}$, da $\begin{pmatrix} 3 \\ 2\\ 1\end{pmatrix} \cdot (-0,\!5) = \begin{pmatrix} -1,\!5 \\ -1\\ -0,\!5\end{pmatrix}$.
$\begin{pmatrix} 3 \\ 2\\ 1\end{pmatrix} \uparrow \uparrow \color{gold}{\begin{pmatrix} 4,\!5 \\ 3\\ 1,\!5\end{pmatrix}}$, da $\begin{pmatrix} 3 \\ 2\\ 1\end{pmatrix} \cdot 1,\!5 = \begin{pmatrix} 4,\!5 \\ 3\\ 1,\!5\end{pmatrix}$.
Die Vektoren $\begin{pmatrix} -1 \\ 0\\ 4\end{pmatrix}$ und $\begin{pmatrix} 0 \\ 2\\ 1\end{pmatrix}$ sind zu keinem der gegebenen Vektoren parallel.
-
Gib an, wie die Multiplikation mit einem Skalar den Vektor $\vec{v}$ verändert.
TippsMultiplizieren wir einen Vektor mit einer negativen Zahl, so kehrt sich die Richtung des Vektors um.
Hier siehst du verschiedene skalare Multiplikationen des Vektors $\vec{v}$:
LösungEin Vektor wird durch Länge und Richtung charakterisiert.
Durch die skalare Multiplikation wird die Länge des Vektors verändert. Beispielsweise ist beim Verdoppeln eines Vektors der neue Vektor zweimal so lang.
Allgemein gilt:
- Multiplizieren wir mit einer Zahl, deren Betrag größer als $1$ ist, so verlängert sich der Vektor (Streckung).
- Multiplizieren wir mit einer Zahl, deren Betrag kleiner als $1$ ist, so verkürzt sich der Vektor (Stauchung).
- Multiplizieren wir mit einer negativen Zahl, so kehrt sich die Richtung des Vektors um.
Für die gegebenen Multiplikationen ergibt sich also:
- $ 1,\!4 \cdot \vec{v}$
$\Rightarrow$ Streckung (Verlängerung) des Vektors ohne Änderung der Richtung- $ -\dfrac{2}{3} \cdot \vec{v}$
$\Rightarrow$ Umkehrung und Stauchung (Verkürzung) des Vektors- $ -2 \cdot \vec{v}$
$\Rightarrow$ Umkehrung und Streckung (Verlängerung) des Vektors- $ 0,\!2 \cdot \vec{v}$
$\Rightarrow$ Stauchung (Verkürzung) des Vektors ohne Änderung der Richtung -
Überprüfe die Multiplikationsaufgaben mit Vektoren.
TippsDer Nullvektor lautet $\begin{pmatrix} 0 \\ 0\\ 0\end{pmatrix}$.
Überprüfe, ob alle Vektorkoordinaten richtig multipliziert wurden.
LösungBei der skalaren Multiplikation multiplizieren wir einen Vektor mit einer Zahl, indem wir jede Vektorkoordinate mit dieser Zahl multiplizieren. Bei der Multiplikation mit Null entsteht der Nullvektor $\begin{pmatrix} 0 \\ 0\\ 0\end{pmatrix}$.
Wir überprüfen damit die Rechnungen:
- $\begin{pmatrix} 1 \\ 1\\ 1\end{pmatrix} \cdot (-1) = \begin{pmatrix} 0 \\ 0\\ 0\end{pmatrix}$
$\begin{pmatrix} 1 \\ 1\\ 1\end{pmatrix} \cdot (-1) = \begin{pmatrix} -1 \\ -1\\ -1\end{pmatrix} $- $0 \cdot \begin{pmatrix} 4 \\ 3 \\ 2\end{pmatrix} \cdot (-1) = \begin{pmatrix} 0 \\ 0\\ 0\end{pmatrix}$
$0 \cdot \begin{pmatrix} 4 \\ 3 \\ 2\end{pmatrix} \cdot (-1) = 0 \cdot (-1) \cdot \begin{pmatrix} 4 \\ 3 \\ 2\end{pmatrix} = 0 \cdot \begin{pmatrix} 4 \\ 3 \\ 2\end{pmatrix} = \begin{pmatrix} 0 \\ 0\\ 0\end{pmatrix}$
- $\begin{pmatrix} 1 \\ 1\\ 1\end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0\\ 0\end{pmatrix} = \begin{pmatrix} 0 \\ 0\\ 0\end{pmatrix} $
$\begin{pmatrix} 1 \\ 1\\ 1\end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0\\ 0\end{pmatrix} = 1 \cdot 0 + 1 \cdot 0 + 1 \cdot 0 = 0$- $\begin{pmatrix} 0 \\ 0\\ 0\end{pmatrix} \cdot 3 = \begin{pmatrix} 0 \\ 0\\ 0\end{pmatrix}$
- $0 \cdot \begin{pmatrix} 1 \\ 2 \\ 3\end{pmatrix} = \begin{pmatrix} 0 \\ 2\\ 3\end{pmatrix}$
$0 \cdot \begin{pmatrix} 1 \\ 2 \\ 3\end{pmatrix} = \begin{pmatrix} 0 \\ 0\\ 0\end{pmatrix}$
9.360
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.212
Lernvideos
38.688
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt