Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Newton-Verfahren – Beispiel

Video abspielen Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.7 / 6 Bewertungen

Erfahrene Lehrkräfte erstellen und prüfen alle Inhalte bei sofatutor – für eine Qualität, auf die du dich verlassen kannst.

Avatar
sofatutor Team
Newton-Verfahren – Beispiel
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Newton-Verfahren – Beispiel Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Newton-Verfahren – Beispiel kannst du es wiederholen und üben.
  • Tipps

    Die allgemeine Iterationsvorschrift lautet

    $ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$.

    Die Ableitung der Funktion lautet $f'(x) = 3x^2+2$.

    Setzte die Funktion und ihre Ableitung in die Iterationsvorschrift ein.

    Setze den Startwert $x_0 = 1$ in die Iterationsvorschrift ein, um $x_1$ zu berechnen.

    Lösung

    Das Newton-Verfahren bedient sich der Iterationsvorschrift

    $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$.

    Du benötigst also die Funktion $f(x)$, welche bereits gegeben ist und ihre 1. Ableitung $f'(x)$. Du bestimmst also zuerst die 1. Ableitung. Zusammen mit der Potenz- und Summenregel für Ableitungen gelangst du zu $f'(x) = 3x^2+2$.

    Setzt du nun $f(x_n)$ und $f'(x_n)$ in die Iterationsvorschrift ein, erhältst du

    $ x_{n+1} = x_n - \frac{x_n^3 + 2x_n - 1}{3x_n^2 + 2}$.

    Setzt du den Startwert $x_0 = 1$ in die Iterationsvorschrift ein, erhältst du

    $ x_{1} = 1 - \frac{f(1)}{f'(1)} = 1 -\frac{(1)^3 + 2 \cdot 1 - 1}{3 \cdot (1)^2+2 \cdot (1)} = 1 -\frac{2}{5} = \frac{3}{5} = 0,6 $.

    Setzt du jetzt wiederum den Wert von $x_1$ in die Iterationsvorschrift erhältst du

    $ x_{2} = 0,6 - \frac{f(0,6)}{f'(0,6)} \approx 0,464935 $.

    Dieses Vorgehen wiederholst du ein weiteres Mal und erhältst $x_3 \approx 0,4534672$.

  • Tipps

    Die Ableitung der Funktion lautet $f'(x) = 3x^2 + 2$.

    Setze die Funktion $f(x)$ und ihre Ableitung $f'(x)$ in die Iterationsvorschrift

    $x_{n+1} = x_n -\frac{f(x_n)}{f'(x_n)} $ ein.

    Setze den Startwert $x_0 = 1$ in die Iterationsvorschrift ein, um $x_1$ zu berechnen.

    Lösung

    Bei dem Newton-Verfahren verwendest du die Iterationsvorschrift

    $ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} $.

    Du benötigst also die Funktion $f(x)=x^3+2x-1$ und ihre 1. Ableitung $f'(x)$. Du bestimmst zunächst die 1. Ableitung. Zusammen mit der Potenz- und Summenregel für Ableitungen gelangst du zu $f'(x) = 3x+2$. Setzt du nun beides in die Iterationsvorschrift ein, erhältst du

    $x_{n+1} = x_n - \frac{x_n^3 + 2x_n-1}{3x_n^2+2}$.

    Zusammen mit dem Startwert $x_0 = 1$ erhältst du

    $ x_{1} = 1 - \frac{f(1)}{f'(1)} = 1 -\frac{(1)^3 + 2 \cdot 1 - 1}{3 \cdot (1)^2+2 \cdot (1)} = 1 -\frac{2}{5} = \frac{3}{5} = 0,6$.

    Setzt du jetzt wiederum den Wert von $x_1$ in die Iterationsvorschrift ein, erhältst du

    $ x_{2} = 0,6 - \frac{f(0,6)}{f'(0,6)} \approx 0,464933$.

    Dieses Vorgehen führst du weiter aus, erhältst $x_3 \approx 0,4534672$, $x_4 \approx 0,4534602$ und schließlich gerundet $x_5 \approx 0,4534$.

    Zur Probe setzt du $x_5$ in die Funktion ein. $f(x_5) \approx 0,000006 \approx 0$.

    Die Nullstelle liegt also ungefähr bei $x \approx 0,4534$.

  • Tipps

    Die Iterationsvorschrift lautet

    $ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$.

    Du benötigst also die Ableitung der Funktionen.

    Setze die Funktion $f(x)$ und ihre Ableitung $f'(x)$ in die Iterationsvorschrift ein.

    Lösung

    Im Allgemeinen lautet die Iterationsvorschrift

    $ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} $.

    Du musst die Funktionen also einmal ableiten. Dazu helfen dir die Summen- und Potenzregel für Ableitungen.

    Hast du die Ableitung der Funktion bestimmt, kannst du $f(x_n)$ und $f'(x_n)$ in die Iterationsvorschrift einsetzen und erhältst

    Beispiel 1:

    $ \begin{align} f(x) & = -x^3-3x-3,5;~f'(x) = -3x^2-3 \\ x_{n+1} & = x_n - \frac{-x_n^3-3x_n-3,5}{-3x_n^2-3} \end{align}$

    Beispiel 2:

    $ \begin{align} f(x) & = -x^3+3x-3,5;~f'(x) = -3x^2+3 \\ x_{n+1} & = x_n - \frac{-x_n^3+3x_n-3,5}{-3x_n^2+3} \end{align}$

    Beispiel 3:

    $ \begin{align} f(x) & = x^3-x^2+1;~f'(x) = 3x^2-2x \\ x_{n+1} & = x_n - \frac{x_n^3-x_n^2+1}{3x_n^2-2x_n} \end{align}$

    Beispiel 4:

    $ \begin{align} f(x) & = x^3-x-2;~f'(x) = 3x^2-1 \\ x_{n+1} & = x_n - \frac{x_n^3-x_n-2}{3x_n^2-1} \end{align}$

  • Tipps

    Die Ableitung der Funktion lautet $f'(x) = 6x^2+1$.

    Setze die Funktion $f(x)$ und ihre Ableitung $f'(x)$ in die Iterationsvorschrift

    $x_{n+1} = x_n -\frac{f(x_n)}{f'(x_n)} $ ein.

    Setze den Startwert $x_0 = 2$ in die Iterationsvorschrift ein, um $x_1$ zu berechnen. Wiederhole das Ganze mit $x_2$ bis zu $x_4$.

    Lösung

    Beim Newton-Verfahren verwendest du die Iterationsvorschrift

    $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} $.

    Du benötigst also die Funktion $f(x)=2x^3+x+2$ und ihre 1. Ableitung $f'(x)$. Du bestimmst zunächst die 1. Ableitung. Zusammen mit der Potenz- und Summenregel für Ableitungen gelangst du zu $f'(x) = 6x^2+1$. Setzt du nun beides in die Iterationsvorschrift ein erhältst du

    $ x_{n+1} = x_n - \frac{2x_n^3 + x_n + 2}{6x_n^2 + 1}$.

    Setzt du den Startwert $x_0 = 2$ in die Iterationsvorschrift ein, erhältst du

    $ x_{1} = 2 - \frac{f(2)}{f'(2)} = 2 -\frac{2 \cdot (2)^3 + 2 + 2}{6 \cdot (2)^2 + 1} = 2 -\frac{20}{25} = \frac{6}{5} = 1,2 $.

    Setzt du jetzt wiederum den Wert von $x_1$ in die Iterationsvorschrift ein, erhältst du

    $ x_{2} = 1,2 - \frac{f(1,2)}{f'(1,2)} = 1,2 -\frac{2 \cdot (1,2)^3 + 1,2 + 2}{6 \cdot (1,2)^2 + 1} \approx 0,5095$.

    $x_3$ erhältst du, indem du $x_2$ in die Iterationsvorschrift einsetzt.

    $ x_{3} = 0,5095 - \frac{f(0,5095)}{f'(0,5095)} \approx -0,5751 $

    Dieses Vorgehen führst du weiter aus und erhältst $x_4 \approx -0,9251$, $x_5 \approx -0,8422$ und $x_6 \approx -0,8352$.

    Zur Probe kannst du $x_6$ in die Funktion einsetzten und erhältst $f(-0,8352) \approx -0,0004 \approx 0$. Du hast die Nullstelle also näherungsweise bestimmt.

  • Tipps

    $x_0$ setzt du immer zuerst in die Iterationsvorschrift ein, um $x_1$ zu berechnen.

    Die allgemeine Iterationsvorschrift lautet $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$.

    $x_1$ liegt näher an der Nullstelle als $x_0$.

    Lösung

    Beim Newton-Verfahren gehst du von einer gegebenen Funktion $f(x)$ mit einer Nullstelle aus und wählst einen Startwert $x_0$. An dieser Stelle zeichnest du an den Graphen durch den Punkt $P_0(x_0|f(x_0))$ eine Tangente. Diese Tangente schneidet die $x$-Achse an der Stelle $x_1$. $x_1$ liegt näher an der gesuchten Nullstelle und ist damit der erste Näherungswert. Mit derselben Vorgehensweise gelangst du von $x_1$ zu $x_2$. Wiederholst du dieses Verfahren immer weiter, erhältst du immer genauere Näherungswerte der Nullstelle Zum Ausdruck kommt das Newton-Verfahren in der Iterationsvorschrift

    $ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} $.

    $f'(x)$ ist dabei die erste Ableitung der Funktion, welche du mithilfe der Potenz- und Summenregel für Ableitungen zu $f'(x) = 3x^2 + 2$ bestimmen kannst.

  • Tipps

    Es sind insgesamt drei verschiedene Nullstellen. Deswegen brauchst du auch drei verschiedene Startwerte.

    Bilde die Ableitung der Funktion $f(x)$.

    Setze die Funktion $f(x)$ und ihre Ableitung $f'(x)$ in die allgemeine Iterationsvorschrift

    $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ ein.

    Wähle drei geeignete Startwerte $x_0$ und setzte sie in die Iterationsvorschrift ein, um jeweils $x_1$ zu berechnen.

    Die Funktion besitzt drei Nullstellen.

    Lösung

    Beim Newton-Verfahren verwendest du die Iterationsvorschrift $ x_{n+1} = x_n -\frac{f(x_n)}{f'(x_n)}$.

    Du brauchst also die Funktion und ihre Ableitung. Die Funktion ist bereits gegeben. Zum Bestimmen der Ableitung hilft dir die Potenz- und Summenregel für Ableitungen.

    Hast du die Ableitung bestimmt, kannst du sie und die Funktion in die Iterationsvorschrift einsetzen. Leitest du $f(x) = x^3 + 3x^2 - 1$ ab, erhältst du $f'(x) = 3x^2+6x$. Setzt du dies in die Iterationsvorschrift ein, erhältst du

    $x_{n+1} = x_n - \frac{x_n^3 + 3x_n^2 - 1}{3x_n^2 + 6x_n} $.

    Dabei musst du darauf achten, $x$ mit $x_n$ zu ersetzen.

    In diese Iterationsvorschrift setzt du nun zum Beispiel den Startwert $x_0 = -3$ ein und erhältst

    $x_1 = -3 - \frac{(-3)^3 + 3 \cdot (-3)^2 - 1}{3 \cdot (-3)^2 + 6 \cdot (-3)} = -\frac{2}{3} \approx -0,6667 $.

    Setzt du nun $x_1$ in die Iterationsvorschrift, erhältst du den nächsten Näherungswert $x_2$. So kannst du weiter verfahren, bis du der Nullstelle nahe genug bist.

    Wählst du als weitere Startwerte $x_0 = -1$ und $x_0 = 1$, erhältst du auf die gleiche Weise die übrigen zwei Nullstellen. Die Ergebnisse findest du in der Tabelle. Die Werte sind auf vier Nachkommastellen gerundet.

    $\begin{array}{c|c|c|c|c} x_0 & x_1 & x_2 & x_3 & x_4 \\ \hline -3 & -2,8889 & -2,8795 & \bf{-2,8794} & \\ \hline -1 & -0,6667 & -0,6528 & \bf{-0,6527} & \\ \hline 1 & 0,6667 & 0,5486 & 0,5324 & \bf{0,5321} \\ \end{array}$

    Die Nullstellen der Funktion liegen also bei $x \approx -2,8794$, $x \approx -0,6527$ und $x \approx 0,5321$.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.515

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.284

Lernvideos

38.703

Übungen

33.652

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden

Pommes der Pinguin hält einen großen gelben Stern in den Händen
Pommes der Pinguin hält einen großen gelben Stern in den Händen
30 Tage kostenlos testen
30 Tage kostenlos testen
Über 1,6 Millionen Schüler*innen nutzen sofatutor Über 1,6 Millionen Schüler*innen nutzen sofatutor
Lernpakete anzeigen
Lernpakete anzeigen
Lernpakete anzeigen