Newton-Verfahren – Beispiel
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Newton-Verfahren – Beispiel Übung
-
Bestimme näherungsweise die Nullstelle mit dem Newton-Verfahren.
TippsDie allgemeine Iterationsvorschrift lautet
$ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$.
Die Ableitung der Funktion lautet $f'(x) = 3x^2+2$.
Setzte die Funktion und ihre Ableitung in die Iterationsvorschrift ein.
Setze den Startwert $x_0 = 1$ in die Iterationsvorschrift ein, um $x_1$ zu berechnen.
LösungDas Newton-Verfahren bedient sich der Iterationsvorschrift
$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$.
Du benötigst also die Funktion $f(x)$, welche bereits gegeben ist und ihre 1. Ableitung $f'(x)$. Du bestimmst also zuerst die 1. Ableitung. Zusammen mit der Potenz- und Summenregel für Ableitungen gelangst du zu $f'(x) = 3x^2+2$.
Setzt du nun $f(x_n)$ und $f'(x_n)$ in die Iterationsvorschrift ein, erhältst du
$ x_{n+1} = x_n - \frac{x_n^3 + 2x_n - 1}{3x_n^2 + 2}$.
Setzt du den Startwert $x_0 = 1$ in die Iterationsvorschrift ein, erhältst du
$ x_{1} = 1 - \frac{f(1)}{f'(1)} = 1 -\frac{(1)^3 + 2 \cdot 1 - 1}{3 \cdot (1)^2+2 \cdot (1)} = 1 -\frac{2}{5} = \frac{3}{5} = 0,6 $.
Setzt du jetzt wiederum den Wert von $x_1$ in die Iterationsvorschrift erhältst du
$ x_{2} = 0,6 - \frac{f(0,6)}{f'(0,6)} \approx 0,464935 $.
Dieses Vorgehen wiederholst du ein weiteres Mal und erhältst $x_3 \approx 0,4534672$.
-
Bestimme die gerundete, näherungsweise bestimmte Nullstelle mit dem Newton-Verfahren.
TippsDie Ableitung der Funktion lautet $f'(x) = 3x^2 + 2$.
Setze die Funktion $f(x)$ und ihre Ableitung $f'(x)$ in die Iterationsvorschrift
$x_{n+1} = x_n -\frac{f(x_n)}{f'(x_n)} $ ein.
Setze den Startwert $x_0 = 1$ in die Iterationsvorschrift ein, um $x_1$ zu berechnen.
LösungBei dem Newton-Verfahren verwendest du die Iterationsvorschrift
$ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} $.
Du benötigst also die Funktion $f(x)=x^3+2x-1$ und ihre 1. Ableitung $f'(x)$. Du bestimmst zunächst die 1. Ableitung. Zusammen mit der Potenz- und Summenregel für Ableitungen gelangst du zu $f'(x) = 3x+2$. Setzt du nun beides in die Iterationsvorschrift ein, erhältst du
$x_{n+1} = x_n - \frac{x_n^3 + 2x_n-1}{3x_n^2+2}$.
Zusammen mit dem Startwert $x_0 = 1$ erhältst du
$ x_{1} = 1 - \frac{f(1)}{f'(1)} = 1 -\frac{(1)^3 + 2 \cdot 1 - 1}{3 \cdot (1)^2+2 \cdot (1)} = 1 -\frac{2}{5} = \frac{3}{5} = 0,6$.
Setzt du jetzt wiederum den Wert von $x_1$ in die Iterationsvorschrift ein, erhältst du
$ x_{2} = 0,6 - \frac{f(0,6)}{f'(0,6)} \approx 0,464933$.
Dieses Vorgehen führst du weiter aus, erhältst $x_3 \approx 0,4534672$, $x_4 \approx 0,4534602$ und schließlich gerundet $x_5 \approx 0,4534$.
Zur Probe setzt du $x_5$ in die Funktion ein. $f(x_5) \approx 0,000006 \approx 0$.
Die Nullstelle liegt also ungefähr bei $x \approx 0,4534$.
-
Bestimme die Iterationsvorschrift.
TippsDie Iterationsvorschrift lautet
$ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$.
Du benötigst also die Ableitung der Funktionen.
Setze die Funktion $f(x)$ und ihre Ableitung $f'(x)$ in die Iterationsvorschrift ein.
LösungIm Allgemeinen lautet die Iterationsvorschrift
$ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} $.
Du musst die Funktionen also einmal ableiten. Dazu helfen dir die Summen- und Potenzregel für Ableitungen.
Hast du die Ableitung der Funktion bestimmt, kannst du $f(x_n)$ und $f'(x_n)$ in die Iterationsvorschrift einsetzen und erhältst
Beispiel 1:
$ \begin{align} f(x) & = -x^3-3x-3,5;~f'(x) = -3x^2-3 \\ x_{n+1} & = x_n - \frac{-x_n^3-3x_n-3,5}{-3x_n^2-3} \end{align}$
Beispiel 2:
$ \begin{align} f(x) & = -x^3+3x-3,5;~f'(x) = -3x^2+3 \\ x_{n+1} & = x_n - \frac{-x_n^3+3x_n-3,5}{-3x_n^2+3} \end{align}$
Beispiel 3:
$ \begin{align} f(x) & = x^3-x^2+1;~f'(x) = 3x^2-2x \\ x_{n+1} & = x_n - \frac{x_n^3-x_n^2+1}{3x_n^2-2x_n} \end{align}$
Beispiel 4:
$ \begin{align} f(x) & = x^3-x-2;~f'(x) = 3x^2-1 \\ x_{n+1} & = x_n - \frac{x_n^3-x_n-2}{3x_n^2-1} \end{align}$
-
Bestimme die Nullstelle näherungsweise.
TippsDie Ableitung der Funktion lautet $f'(x) = 6x^2+1$.
Setze die Funktion $f(x)$ und ihre Ableitung $f'(x)$ in die Iterationsvorschrift
$x_{n+1} = x_n -\frac{f(x_n)}{f'(x_n)} $ ein.
Setze den Startwert $x_0 = 2$ in die Iterationsvorschrift ein, um $x_1$ zu berechnen. Wiederhole das Ganze mit $x_2$ bis zu $x_4$.
LösungBeim Newton-Verfahren verwendest du die Iterationsvorschrift
$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} $.
Du benötigst also die Funktion $f(x)=2x^3+x+2$ und ihre 1. Ableitung $f'(x)$. Du bestimmst zunächst die 1. Ableitung. Zusammen mit der Potenz- und Summenregel für Ableitungen gelangst du zu $f'(x) = 6x^2+1$. Setzt du nun beides in die Iterationsvorschrift ein erhältst du
$ x_{n+1} = x_n - \frac{2x_n^3 + x_n + 2}{6x_n^2 + 1}$.
Setzt du den Startwert $x_0 = 2$ in die Iterationsvorschrift ein, erhältst du
$ x_{1} = 2 - \frac{f(2)}{f'(2)} = 2 -\frac{2 \cdot (2)^3 + 2 + 2}{6 \cdot (2)^2 + 1} = 2 -\frac{20}{25} = \frac{6}{5} = 1,2 $.
Setzt du jetzt wiederum den Wert von $x_1$ in die Iterationsvorschrift ein, erhältst du
$ x_{2} = 1,2 - \frac{f(1,2)}{f'(1,2)} = 1,2 -\frac{2 \cdot (1,2)^3 + 1,2 + 2}{6 \cdot (1,2)^2 + 1} \approx 0,5095$.
$x_3$ erhältst du, indem du $x_2$ in die Iterationsvorschrift einsetzt.
$ x_{3} = 0,5095 - \frac{f(0,5095)}{f'(0,5095)} \approx -0,5751 $
Dieses Vorgehen führst du weiter aus und erhältst $x_4 \approx -0,9251$, $x_5 \approx -0,8422$ und $x_6 \approx -0,8352$.
Zur Probe kannst du $x_6$ in die Funktion einsetzten und erhältst $f(-0,8352) \approx -0,0004 \approx 0$. Du hast die Nullstelle also näherungsweise bestimmt.
-
Beschrifte die Formeln und Angaben beim Netwon-Verfahren an dem Beispiel.
Tipps$x_0$ setzt du immer zuerst in die Iterationsvorschrift ein, um $x_1$ zu berechnen.
Die allgemeine Iterationsvorschrift lautet $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$.
$x_1$ liegt näher an der Nullstelle als $x_0$.
LösungBeim Newton-Verfahren gehst du von einer gegebenen Funktion $f(x)$ mit einer Nullstelle aus und wählst einen Startwert $x_0$. An dieser Stelle zeichnest du an den Graphen durch den Punkt $P_0(x_0|f(x_0))$ eine Tangente. Diese Tangente schneidet die $x$-Achse an der Stelle $x_1$. $x_1$ liegt näher an der gesuchten Nullstelle und ist damit der erste Näherungswert. Mit derselben Vorgehensweise gelangst du von $x_1$ zu $x_2$. Wiederholst du dieses Verfahren immer weiter, erhältst du immer genauere Näherungswerte der Nullstelle Zum Ausdruck kommt das Newton-Verfahren in der Iterationsvorschrift
$ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} $.
$f'(x)$ ist dabei die erste Ableitung der Funktion, welche du mithilfe der Potenz- und Summenregel für Ableitungen zu $f'(x) = 3x^2 + 2$ bestimmen kannst.
-
Ermittle näherungsweise die drei Nullstellen der Funktion mit dem Newton-Verfahren.
TippsEs sind insgesamt drei verschiedene Nullstellen. Deswegen brauchst du auch drei verschiedene Startwerte.
Bilde die Ableitung der Funktion $f(x)$.
Setze die Funktion $f(x)$ und ihre Ableitung $f'(x)$ in die allgemeine Iterationsvorschrift
$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ ein.
Wähle drei geeignete Startwerte $x_0$ und setzte sie in die Iterationsvorschrift ein, um jeweils $x_1$ zu berechnen.
Die Funktion besitzt drei Nullstellen.
LösungBeim Newton-Verfahren verwendest du die Iterationsvorschrift $ x_{n+1} = x_n -\frac{f(x_n)}{f'(x_n)}$.
Du brauchst also die Funktion und ihre Ableitung. Die Funktion ist bereits gegeben. Zum Bestimmen der Ableitung hilft dir die Potenz- und Summenregel für Ableitungen.
Hast du die Ableitung bestimmt, kannst du sie und die Funktion in die Iterationsvorschrift einsetzen. Leitest du $f(x) = x^3 + 3x^2 - 1$ ab, erhältst du $f'(x) = 3x^2+6x$. Setzt du dies in die Iterationsvorschrift ein, erhältst du
$x_{n+1} = x_n - \frac{x_n^3 + 3x_n^2 - 1}{3x_n^2 + 6x_n} $.
Dabei musst du darauf achten, $x$ mit $x_n$ zu ersetzen.
In diese Iterationsvorschrift setzt du nun zum Beispiel den Startwert $x_0 = -3$ ein und erhältst
$x_1 = -3 - \frac{(-3)^3 + 3 \cdot (-3)^2 - 1}{3 \cdot (-3)^2 + 6 \cdot (-3)} = -\frac{2}{3} \approx -0,6667 $.
Setzt du nun $x_1$ in die Iterationsvorschrift, erhältst du den nächsten Näherungswert $x_2$. So kannst du weiter verfahren, bis du der Nullstelle nahe genug bist.
Wählst du als weitere Startwerte $x_0 = -1$ und $x_0 = 1$, erhältst du auf die gleiche Weise die übrigen zwei Nullstellen. Die Ergebnisse findest du in der Tabelle. Die Werte sind auf vier Nachkommastellen gerundet.
$\begin{array}{c|c|c|c|c} x_0 & x_1 & x_2 & x_3 & x_4 \\ \hline -3 & -2,8889 & -2,8795 & \bf{-2,8794} & \\ \hline -1 & -0,6667 & -0,6528 & \bf{-0,6527} & \\ \hline 1 & 0,6667 & 0,5486 & 0,5324 & \bf{0,5321} \\ \end{array}$
Die Nullstellen der Funktion liegen also bei $x \approx -2,8794$, $x \approx -0,6527$ und $x \approx 0,5321$.
9.515
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.284
Lernvideos
38.703
Übungen
33.652
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Satz des Pythagoras – Übungen
- Binomische Formeln
- Graphisches Ableiten – Übungen
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
5 Minuten verstehen
5 Minuten üben
2 Minuten Fragen stellen