Assoziativgesetz und Kommutativgesetz bei Brüchen

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Assoziativgesetz und Kommutativgesetz bei Brüchen Übung
-
Vervollständige das Assoziativgesetz und das Kommutativgesetz.
Tipps$5 + 12 = 12 + 5$
Hier wurde das Kommutativgesetz angewendet.
Das Assoziativgesetz kann Rechnungen vereinfachen:
$\frac{3}{8} + \frac{3}{4} + \frac{1}{4} = \frac{3}{8} + \left(\frac{3}{4} + \frac{1}{4}\right) = \frac{3}{8} + 1 = 1\frac{3}{8}$
LösungDas Assoziativ- und das Kommutativgesetz können uns dabei helfen, Terme möglichst geschickt zu berechnen.
Kommutativgesetz
Das Kommutativgesetz wird auch Vertauschungsgesetz genannt.
Es besagt, dass wir bei der Addition Summanden beliebig vertauschen können:
$7 + 24 + 13= 24 + 7 + 13$Bei der Multiplikation können wir Faktoren beliebig vertauschen:
$5 \cdot 13 \cdot 2 = 5 \cdot 2 \cdot 13$Das Kommutativgesetz gilt zudem beim Rechnen mit Brüchen.
Assoziativgesetz
Das Assoziativgesetz wird auch Verknüpfungsgesetz genannt.
Es besagt, dass wir bei der Addition und bei der Multiplikation beliebig Klammern setzen oder weglassen dürfen:
$5 \cdot 2 \cdot 13 = (5 \cdot 2) \cdot 13 = 10 \cdot 13 = 130$$24 + 7 + 13 = 24 + (7+13) = 24+20=44$
Das Assoziativgesetz gilt zudem beim Rechnen mit Brüchen.
-
Gib an, ob richtig gerechnet wurde.
TippsDas Kommutativgesetz besagt, dass bei der Addition die Summanden beliebig vertauscht werden können. Gleiches gilt für die Faktoren der Multiplikation.
Das Kommutativgesetz kann auch für Brüche angewendet werden.
$\left(\frac{5}{4} + \frac{3}{4}\right)+ \frac{1}{4} =\frac{5}{4} + (\frac{3}{4} + \frac{1}{4})$
LösungWir prüfen, ob die Gesetze richtig angewendet wurden:
Folgende Rechnungen sind richtig:
- $\frac{1}{8} \cdot \frac{3}{4} \cdot \frac{4}{3} =\frac{1}{8} \cdot \left(\frac{3}{4}\cdot \frac{4}{3}\right) = \frac{1}{8} \cdot 1 = \frac{1}{8}$
- $\frac{1}{3} + \frac{3}{5} + \frac{2}{3} + \frac{7}{5} = \frac{1}{3} + \frac{2}{3} + \frac{3}{5} + \frac{7}{5} = \left(\frac{1}{3} + \frac{2}{3}\right) + \left(\frac{3}{5} + \frac{7}{5}\right) = 1 + 2 = 3$
- $\left(\frac{1}{2} \cdot \frac{3}{2}\right) \cdot \frac{5}{2} = \frac{3}{4} \cdot \frac{5}{2} = \frac{15}{8}$
Folgende Rechnungen sind falsch:- $\left(\frac{5}{4} + \frac{3}{4}\right)+ \frac{1}{4} =\frac{5}{4} + \left(\frac{3}{4}+ \frac{1}{4}\right) \neq \frac{5}{4} + \mathbf{\frac{4}{4} + \frac{4}{4}} = {\frac{13}{4}}$
$\left(\frac{5}{4} + \frac{3}{4}\right)+ \frac{1}{4} =\frac{5}{4} + \left(\frac{3}{4}+ \frac{1}{4}\right) = \frac{5}{4} + \frac{4}{4} = \frac{9}{4}$
- $\frac{1}{3} \cdot \frac{2}{3} \neq \frac{1}{3} \cdot \mathbf{\frac{3}{2}} = {\frac{1}{2}}$
$\frac{1}{3} \cdot \frac{2}{3} = \frac{2}{3} \cdot \frac{1}{3} = \frac{2}{9}$
-
Wende das Kommutativgesetz und das Assoziativgesetz zur Vereinfachung der Rechenausdrücke an.
TippsBei der Multiplikation kannst du die Faktoren vertauschen, bei der Addition die Summanden.
Achte darauf, die Rechenzeichen nicht zu ändern!
LösungDa das Kommutativgesetz und das Assoziativgesetz auch für Brüche gelten, wenden wir sie an, um die Rechenausdrücke zu vereinfachen. Danach können wir die Ausdrücke leichter berechnen:
- $\frac{7}{9} + \frac{3}{4} + \frac{1}{9} = \frac{7}{9} + \frac{1}{9} + \frac{3}{4} = \frac{7+1}{9} + \frac{3}{4} = \frac{8}{9} + \frac{3}{4} = \frac{32}{36} + \frac{27}{36} = \frac{59}{36}$
- $\frac{2}{5} \cdot \frac{3}{4} \cdot \frac{1}{3} = \frac{2}{5} \cdot \left( \frac{3}{4} \cdot \frac{1}{3}\right) = \frac{2}{5} \cdot \frac{1}{4} = \frac{1}{10}$
- $\frac{1}{6} + \frac{3}{4} + \frac{5}{6} + \frac{7}{4} = \frac{1}{6} + \frac{5}{6} + \frac{3}{4} + \frac{7}{4} = \left(\frac{1}{6} + \frac{5}{6}\right) + \left(\frac{3}{4} + \frac{7}{4}\right) = \frac{1+5}{6} + \frac{3+7}{4} = 1 + \frac{10}{4} = 3\frac{1}{2}$
- $\frac{3}{7} \cdot \frac{1}{5} \cdot \frac{7}{2} = \frac{3}{7} \cdot \frac{7}{2} \cdot \frac{1}{5} = \frac{3}{2} \cdot \frac{1}{5} = \frac{3}{10}$
-
Wende das Assoziativgesetz und das Kommutativgesetz an, um das Ergebnis zu bestimmen.
TippsVersuche, beim Multiplizieren so zu vereinfachen, dass du geschickt kürzen kannst.
Achte bei der Addition darauf, Brüche mit gleichem Nenner zusammenzufassen. Diese kannst du besonders einfach addieren.
LösungBeispiel 1:
$\frac{3}{4} + \frac{2}{7} + \frac{1}{7} = \frac{3}{4} + \left(\frac{2}{7} + \frac{1}{7}\right) = \frac{3}{4} + \frac{3}{7} = \frac{33}{28}$Wir wenden zuerst das Assoziativgesetz an, um die beiden Brüche mit gleichem Nenner zusammenzufassen. Danach addieren wir das Ergebnis mit dem ersten Bruch.
Beispiel 2:
$\frac{2}{5} \cdot \frac{1}{4} \cdot \frac{5}{3} = \frac{2}{5} \cdot \frac{5}{3} \cdot \frac{1}{4} = \frac{2}{3} \cdot \frac{1}{4} = \frac{1}{6}$Wir wenden zunächst das Kommutativgesetz an, um den ersten und den letzten Bruch multiplizieren zu können. Diese können wir vor dem Multiplizieren geschickt kürzen. Zum Schluss multiplizieren wir das Ergebnis noch mit $\frac{1}{4}$.
-
Gib jeweils an, welches Gesetz angewendet wurde.
TippsAssoziativgesetz = Verbindungsgesetz
Kommutativgesetz = Vertauschungsgesetz
$4 + 18 + 26 = 4 + 26 + 18 = 48$
Hier wurde das Kommutativgesetz zur geschickten Berechnung angewendet.
LösungDas Kommutativgesetz und das Assoziativgesetz gelten auch für Brüche. Wir überprüfen also, ob mit dem Kommutativgesetz vertauscht wurde oder ob mit dem Assoziativgesetz verknüpft wurde:
Hier wurde das Assoziativgesetz angewendet:
- $\left(\frac{5}{4} + \frac{3}{4}\right)+ \frac{1}{4} =\frac{5}{4} + \mathbf{\left(\frac{3}{4}+ \frac{1}{4}\right)} = \frac{5}{4} + 1 = \frac{9}{4}$
- $\frac{1}{8} \cdot \frac{3}{4} \cdot \frac{4}{3} =\frac{1}{8} \cdot \mathbf{\left(\frac{3}{4} \cdot \frac{4}{3}\right)} = \frac{1}{8} \cdot 1 = \frac{1}{8}$
Hier wurde das Kommutativgesetz angewendet:
- $\frac{1}{3} + \frac{3}{5} + \frac{2}{3} + \frac{7}{5} = \frac{1}{3} + \mathbf{\frac{2}{3} + \frac{3}{5}} + \frac{7}{5} = 1 + 2 = 3$
- $\frac{1}{3} \cdot \frac{2}{3} = \mathbf{\frac{2}{3} \cdot \frac{1}{3}} = \frac{2}{9}$
- $\frac{3}{4} \cdot \frac{1}{8} \cdot \frac{4}{3} = \mathbf{\frac{1}{8} \cdot \frac{3}{4}} \cdot \frac{4}{3} = \frac{1}{8} \cdot 1 = \frac{1}{8}$
-
Berechne möglichst geschickt.
TippsBeispiel:
$\frac{2}{5} \cdot \frac{3}{7} \cdot \frac{7}{3} = \frac{2}{5} \cdot \left(\frac{3}{7} \cdot \frac{7}{3}\right) = \frac{2}{5} \cdot 1 = \frac{2}{5}$
Bei der Addition kannst du die Summanden vertauschen. Dies ist besonders vorteilhaft, wenn du dadurch Summanden mit gleichem Nenner zusammenfassen kannst.
LösungWir können das Vertauschungsgesetz und das Verknüpfungsgesetz zum geschickten Berechnen der Rechenausdrücke verwenden:
Beispiel 1:
$\dfrac{1}{5} + \dfrac{2}{3} + \dfrac{2}{6} + \dfrac{4}{5}= \dfrac{1}{5} + \underbrace{\frac{4}{5} + \frac{2}{3} + \frac{2}{6}}_{\text{Kommutativgesetz}} = \underbrace{\left(\frac{1}{5} + \frac{4}{5}\right)}_{\text{Assoziativgesetz}} + \underbrace{\left(\frac{2}{3} + \frac{2}{6}\right)}_{\text{Assoziativgesetz}} = \dfrac{5}{5} + \dfrac{6}{6} =1+1= 2$
Wir wenden erst das Kommutativgesetz an und anschließend das Assoziativgesetz.
Beispiel 2:
$\dfrac{4}{7} \cdot \dfrac{9}{2} \cdot \dfrac{7}{3} = \dfrac{4}{7} \cdot \underbrace{\dfrac{7}{3} \cdot \dfrac{9}{2}}_{\text{Kommutativgesetz}} = \underbrace{\left(\dfrac{4}{7} \cdot \dfrac{7}{3}\right)}_{\text{Assoziativgesetz}} \cdot \dfrac{9}{2} = \dfrac{4}{3} \cdot \dfrac{9}{2} = 6$
Wir wenden zunächst das Kommutativgesetz an und danach das Assoziativgesetz.
Beispiel 3:
$\dfrac{4}{2} \cdot \dfrac{3}{8} \cdot \dfrac{8}{6} = \dfrac{4}{2} \cdot \underbrace{\left(\frac{3}{8} \cdot \frac{8}{6}\right)}_{\text{Assoziativgesetz}} = \dfrac{4}{2} \cdot \dfrac{1}{2} = 1$
Wir wenden das Assoziativgesetz an.
Beispiel 4:
$\dfrac{8}{4} + \dfrac{3}{7} + \dfrac{4}{7} = \dfrac{8}{4} + \underbrace{\left(\frac{3}{7} + \frac{4}{7}\right)}_{\text{Assoziativgesetz}} = \dfrac{8}{4} + \dfrac{3+4}{7} = 3$
Wir wenden das Assoziativgesetz an.
9.360
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.211
Lernvideos
38.688
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt