Quadratische Funktionen: f(x)=x²+c
rein quadratisch, Parabel, Scheitelpunkt, Streckfaktor, Normalparabel, gestreckt, gestaucht, Scheitelform, Normalform, quadratische Ergänzung, Scheitelform ermitteln, Binomische Formeln anwenden, f(x) = a(x-d)² + e, f(x) = ax² + bx + c
Beliebteste Videos
Jetzt mit Spaß die Noten verbessern
und sofort Zugriff auf alle Inhalte erhalten!
30 Tage kostenlos testenInhalt
Was ist eine quadratische Funktion?
Wir betrachten quadratische Funktionen der Form $f(x) = x^{2} +c$. Dabei ist $x^{2}$ das quadratische Glied und $c$ das absolute Glied. Der Graph zu einer solchen Funktion ist eine zur $y$-Achse symmetrische und nach oben geöffnete Normalparabel, die ihren Scheitelpunkt in $S(0|c)$ hat. Der $y$-Achsenabschnitt des Graphen ist also $c$.
Verschiebungen entlang der $y$-Achse
Wir betrachten nun Graphen zu Funktionen der Form $f(x)=x^{2}+c$, wobei wir den Einfluss des Parameters $c$ untersuchen. Hierzu sind die folgenden Normalparabeln gegeben:
Für $c = 0$ erhalten wir die Funktionsgleichung $f(x) = x^{2}$. Der zugehörige Graph ist die blaue Normalparabel, deren Scheitelpunkt durch den Ursprung des Koordinatensystems verläuft, also $S(0|0)$.
Für $c\gt 0$ betrachten wir die grüne nach oben verschobene Normalparabel. Die grüne Parabel ist gegenüber der blauen um eine Einheit nach oben verschoben. Für diese Normalparabel erhalten wir mit $c=1$ die Funktionsgleichung $f(x) = x^{2} +1$ und den Scheitelpunkt $S(0|1)$.
Für $c\lt 0$ betrachten wir schließlich die gelbe Parabel. Diese ist eine gegenüber der blauen Parabel um zwei Einheiten nach unten verschobene Normalparabel. Es gilt also $c=-2$ und die zugehörige Funktionsgleichung lautet $f(x) = x^{2} -2$. Der Scheitelpunkt dieser Parabel liegt bei $S(0|-2)$.
Zusammenfassung
Die Graphen quadratischer Funktionen der Form $f(x) = x^{2} + c$
- sind Normalparabeln.
- sind achsensymmetrisch zur $y$-Achse.
- sind nach oben geöffnet.
- haben ihren Scheitelpunkt bei $S(0|c)$.
- haben ihren $y$-Achsenabschnitt in $c$.
Wir unterscheiden bei einer Funktion der Form $f(x)=x^{2}+c$ drei Fälle:
- $c = 0$: Normalparabel mit $S(0|0)$
- $c \gt 0$: nach oben verschobene Normalparabel mit $S(0|c)$
- $c \lt 0$: nach unten verschobene Normalparabel mit $S(0|c)$
Alle Videos zum Thema
Videos zum Thema
Quadratische Funktionen: f(x)=x²+c (3 Videos)
Alle Arbeitsblätter zum Thema
Arbeitsblätter zum Thema
Quadratische Funktionen: f(x)=x²+c (3 Arbeitsblätter)
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Primzahlen
- Geometrische Lagebeziehungen
- Rechteck
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Was ist eine Viertelstunde
- Prisma
- Mitternachtsformel
- Grundrechenarten Begriffe
- Dreiecksarten
- Quader
- Satz des Pythagoras
- Dreieck Grundschule
- Kreis
- Standardabweichung
- Flächeninhalt
- Volumen Kugel
- Zahlen in Worten schreiben
- Meter
- Orthogonalität
- Schriftlich multiplizieren
- Brüche multiplizieren
- Potenzgesetze
- Distributivgesetz
- Flächeninhalt Dreieck
- Rationale Zahlen
- Volumen berechnen
- Brüche addieren
- Kongruenz
- Exponentialfunktion
- Scheitelpunktform
- Logarithmus
- Skalarprodukt
- Primfaktorzerlegung
- Quadratische Ergänzung
- Zinseszins
- Geradengleichung aus zwei Punkten bestimmen
- Sinusfunktion
- Natürliche Zahlen
- Brüche dividieren
- Sinus