30 Tage risikofrei testen

Überzeugen Sie sich von der Qualität unserer Inhalte im Basis- oder Premium-Paket.

Überzeugen Sie sich von der Qualität unserer Inhalte.

30 Tage risikofrei testen

Was ist der Logarithmus?

Der Logarithmus ist die Umkehroperation zum Potenzieren.

Wir beginnen mit einem Beispiel:

  • Du weißt sicherlich, dass $3^4 = 3 \cdot 3 \cdot 3 \cdot 3 =81$ ist.
  • Wenn du nun umgekehrt wissen möchtest, mit welcher Zahl du $3$ potenzieren musst, um $81$ zu erhalten, wie kannst du dann vorgehen?

Diese Frage führt zu der Gleichung $3^x=81$. Hier hilft dir der Logarithmus weiter. Er beantwortet die Frage: „Mit welcher Zahl muss du $3$ potenzieren, damit $81$ herauskommt?“

Die Lösung lautet $x=\log_3{81}$.

Allgemeiner kannst du dies auch so formulieren:

  • Die Gleichung $a^x=b$ wird durch $y=\log_a{b}$ gelöst.
  • Der rechte Teil der Gleichung wird „Logarithmus zur Basis $a$ von $b$“ genannt.
  • Dabei muss die Basis positiv sein.

Es gibt natürlich verschiedene Basen. Einige davon führen zu speziellen Logarithmen, welche besonders häufig verwendet werden:

  • Der Logarithmus zur Basis $10$ wird auch als dekadischer Logarithmus bezeichnet und schreibt sich abkürzend so: $\log_{10}=\lg$.
  • Der Logarithmus zur Basis $e\approx2,71828$, der Euler'schen Zahl, wird als Logarithmus naturalis bezeichnet: $\log_e=\ln$.

Diese beiden Logarithmen findest du auch auf deinem Taschenrechner.

Die allgemeine Logarithmusfunktion

Eine Logarithmusfunktion zur Basis $a$ hat die Gestalt

$\quad~~~f(x)=\log_a(x)$.

Die Logarithmusfunktion zur Basis $a$ ist die Umkehrfunktion der Exponentialfunktion zur Basis $a$.

Der Definitionsbereich

Da der Logarithmus die Umkehroperation zum Potenzieren ist und die Basis $a$, welche potenziert wird, positiv, folgt daraus, dass auch $a^x$ positiv ist. Dies bedeutet, dass die Logarithmusfunktion nur für positive Argumente definiert ist:

$\quad~~~\mathbb{D}_f=\mathbb{R}^+$.

Der Wertebereich

Der Wertebereich der Logarithmusfunktion ist die Menge der reellen Zahlen:

$\quad~~~\mathbb{W}_f=\mathbb{R}$.

Spezielle Funktionswerte und Grenzwertverhalten

  • Es ist $f(1)=\log_a(1)=0$. Den Punkt $P(1|0)$ haben alle Exponentialfunktionen unabhängig von der Basis gemeinsam, da $a^0=1$ gilt.
  • Wenn du für $x=a$ einsetzt, erhältst du $f(a)=\log_a(a)=1$, da $a^1=a$ ist.

Diese beiden Funktionswerte hat jede Logarithmusfunktion unabhängig von der Basis $a>0$, $a\neq 0$. Bei den Grenzwerten werden zwei Fälle unterschieden:

Erster Fall: $f(x)=\log_a(x)$, für $a>1$

  • $\lim\limits_{x\to 0}f(x)=$„$-\infty$“ sowie
  • $\lim\limits_{x\to \infty}f(x)=$„$\infty$“.

Zweiter Fall: $g(x)=\log_a(x)$, für $0<a<1$

  • $\lim\limits_{x\to 0}g(x)=$„$\infty$“ sowie
  • $\lim\limits_{x\to \infty}g(x)=$„$-\infty$“.

Hier siehst die Funktionsgraphen zu $f(x)=\log_2(x)$ (grün) und den zu $g(x)=\log_{0,5}(x)$ (rot).

999_log_2.jpg

Beispiel

Wir untersuchen die Funktion

$f(x)=\log_{1,2}(x)-17,65$.

Dabei steht $x$ für die Anzahl von Menschen, die eine Neuigkeit erfahren haben und $f(x)$ für die Zeit in Tagen, zu der diese Neuigkeit so viele Menschen erreicht hat.

  • Willst du wissen, nach wie vielen Tagen $100$ Menschen die Neuigkeit kennen, setzt du für $x=100$ in der Funktionsgleichung ein:

$\quad~~~f(100)=\log_{1,2}(100)-17,65\approx 7,6$.

  • Nach etwas mehr als siebeneinhalb Tagen kennen $100$ Menschen die Neuigkeit.
  • Möchtest du wissen, wie viele Menschen die Neuigkeit am Anfang, also $f(x)=0$, kennen, musst du eine Gleichung lösen:

$\quad~~~\begin{array}{rclll}0&=&\log_{1,2}(x)-17,65&|&+17,65\\\ 17,65&=&\log_{1,2}(x)&|&1,2^{(~~~)}\\\ 1,2^{17,65}&=&x\\\ 25&\approx&x \end{array}$

  • Zu Beginn kennen $25$ Menschen die Neuigkeit.
  • Übrigens: Die zugehörige Exponentialfunktion lautet

$\quad~~~g(x)=25\cdot 1,2^x$.

Einfluss der Basis auf den Funktionsgraphen

Bei der Exponentialfunktion $g(x)=a^x$ kannst du feststellen, dass diese umso steiler verläuft, je größer die Basis $a$ ist. Umgekehrt verläuft die entsprechende Logarithmusfunktion flacher.

Die natürliche Logarithmusfunktion

Die natürliche Logarithmusfunktion

$f(x)=\ln(x)$

ist die Umkehrfunktion der natürlichen Exponentialfunktion $g(x)=e^x$.

Auch bei der natürlichen Logarithmusfunktion ist der Definitionsbereich $\mathbb{D}_f=\mathbb{R}^+$ und der Wertebereich $\mathbb{W}_f=\mathbb{R}$.

Beispiel

Wir schauen uns die Funktion

$\quad~~~f(x)=3\ln(x-1)-2$

an. Wir untersuchen erst einmal, für welche Argumente $x$ die Funktion überhaupt definiert ist. Es muss $x-1>0$ gelten, also $x>1$. Damit ist $\mathbb{D}_f=\{x\in\mathbb{R}:x>1\}$.

Du kannst den Funktionsgraphen zeichnen, indem du eine Wertetabelle erstellst:

999_Wertetabelle.jpg

Den zugehörigen Funktionsgraphen kannst du hier sehen.

999_3ln(x-1)-2.jpg

Nun kannst du dich auch fragen, für welches $x$ der Funktionswert $f(x)=19$ angenommen wird. Dies führt zu einer Gleichung $19=3\ln(x-1)-2$, deren Lösung du hier siehst:

$\quad~~~\begin{array}{rclll} 19&=&3\ln(x-1)-2&|&+2\\\ 21&=&3\ln(x-1)&|&:3\\\ 7&=&\ln(x-1)&|&e^{(~~~)}\\\ e^7&=&x-1&|&+1\\\ e^7+1&=&x\\\ 1097,6&\approx&x \end{array}$

Bei den allgemeinen Logarithmusfunktionen ist bereits das Grenzwertverhalten erklärt worden. An diesem Beispiel kannst du erkennen, dass die Logarithmusfunktion „sehr langsam“ gegen $\infty$ geht.