30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Jetzt Teil der Test-Community werden und tolle Dankeschöns kassieren!

Aldol-Kondensation 08:45 min

Textversion des Videos

Transkript Aldol-Kondensation

Guten Tag und herzlich willkommen. In diesem Video geht es um die Aldolkondensation. Um dieses Video gut verstehen zu können, solltet ihr einige Grundbegriffe kennen. Dazu gehören Aldehyde genauso wie Ketone. Ihr solltet wissen, was ein Carbanion ist. Ihr solltet mit dem Begriff Nucleophil vertraut sein. Und schließlich solltet ihr klare Vorstellung über den Begriff der Mesomerie besitzen. Das Video ist folgendermaßen gegliedert:

  1. Aldol-Reaktion und Aldol-Kondensation
  2. Der Mechanismus
  3. Die Bedeutung der Reaktion
  4. Biosynthese von Fructose
  5. Die Retro-Aldol-Reaktion
  6. Zusammenfassung

  7. Aldol-Reaktion und Aldol-Kondensation Betrachten wir eine einfache Aldol-Reaktion. Sie wird auch als Aldol-Addition bezeichnet. Ein Molekül Ethanal reagiert mit einem weiteren Molekül Ethanal in Anwesenheit einer Base. Im Ergebnis entsteht ein Alkohol, der gleichzeitig ein Aldehyd ist, ein sogenanntes Aldol. Im zweiten Schritt, der sogenannten Aldol-Kondensation, reagiert das Aldol weiter. Die Hydroxygruppe wird abgespalten, gleichsam wie ein Wasserstoffatom von der Methylengruppe. Im Ganzen wird Wasser abgeführt. Es kommt zur Kondensation. Es entsteht ein ungesättigter Aldehyd. Er trägt hier den Namen Crotonaldehyd. Die Aldol-Reaktion ist somit die Addition zweier Carbonylverbindungen in Anwesenheit einer Base. Kommen wir nun zu

  8. Mechanismus der Reaktion Der erste Schritt der Reaktion ist die Deprotonierung. Durch die hohe Elektronegativität des Sauerstoffatoms kommt es zu einem Elektronensog, sodass ein Wasserstoffatom der Methylgruppe aktiviert wird. Man spricht hier von einer Aktivierung in α-Stellung. Diese wird von der Base ausgenutzt. Sie reißt das Proton ab und es bildet sich Wasser. Gleichzeitig entsteht das für die Reaktion wichtige Carbanion. Für die Stabilisierung des Carbanions ist die Mesomerie von Bedeutung. Dabei kommt es zu Verschiebungen von Doppelbindung und Ladung. Die mesomeren Grenzstrukturen kann man als Carbanion und Enolat-Ion auffassen. Sie führen zur Stabilisierung des Ions. Es entsteht ein für die Aldol-Reaktion notwendiges Nucleophil. Der nächste Schritt ist der Nucleophile Angriff. Das nucleophile Zentrum an der Carbonylgruppe befindet sich am Kohlenstoffatom. Dorthin ist die Attacke des Carbanions gerichtet. Im Ergebnis des nucleophilen Angriffs bildet sich ein Alkoholat-Ion. Dieses reagiert mit einem Proton. Das Proton kann aus Wasser stammen und im Ergebnis wird das Hydroxidion, das heißt die Base, wieder frei. Es ist ein neutrales Molekül entstanden, das Aldol. Der weiterführende Schritt ist die Wasserabspaltung vom Aldol-Molekül. Im Ergebnis bildet sich ein ungesättigter Aldehyd. Aus Ethanal entsteht so Crotonaldehyd. Der zweite Reaktionsschritt wird als Aldol-Kondensation bezeichnet. 

  9. Bedeutung der Aldol-Kondensation Bei der Reaktion von 2 Ethanal-Molekülen verschmelzen 2 C2-Einheiten. Mit dem Aldol bildet sich eine C4-Einheit. Es kommt zur C-C-Knüpfung. Daraus ist ersichtlich, dass die Aldol-Kondensation eine große Bedeutung beim Aufbau von Molekülen hat. 

  10. Biosynthese von Fructose Fructose wird aus 2 C3-Bausteinen hergestellt. Beim 1. Baustein handelt es sich um Dihydroxyacetonphosphat. Das 2. Strukturelement ist Glycerinaldehyd-3-phosphat. Die Bildung des nucleophilen Zentrums und die Herstellung einer neuen Bindung werden durch Pfeile angedeutet. In Anwesenheit des Enzyms Aldolase entsteht bei einer Gleichgewichtsreaktion eine C6-Einheit. Es hat sich eine neue C-C-Bindung gebildet. Die neu enstandene Verbindung heißt Fructose-1,6-biphosphat. Nach Abspaltung der Phosphatreste erhält man die Fructose. 

  11. Retro-Aldol-Reaktion Die Retro-Aldol-Reaktion ist die umgekehrte Reaktion zur Aldol-Reaktion. Sie dient dazu, aus einem Aldol-Produkt die Strukturelemente herzuleiten. Schauen wir uns dieses Kondensationsprodukt an. Man sieht, dass es bei der Reaktion mit Wasser formal 2 Moleküle Propanal bildet. Etwas komplizierter ist es, die Bausteine für diese Verbindung abzuleiten. Die Kohlenstoff-Kohlenstoff-Doppelbindungen stellen die Verknüpfungsstellen der Aldol-Kondensation dar. Demzufolge muss dieses Molekül formal mit 2 Molekülen Wasser reagieren. Man sieht sehr schön, dass man in der Mitte das Strukturelement von Aceton besitzt. Die beiden Reste links und rechts entstammen dem Benzaldehyd. Aus der Strukturanalyse lässt sich auch gleichzeitig der Name dieser Verbindung herleiten: Dibenzalaceton.

  12. Zusammenfassung Die Aldol-Reaktion ist die Addition zweier Carbonylgruppen. Ein einfaches Beispiel dafür ist die Addition zweier Moleküle Ethanal. Die Reaktion läuft in Anwesenheit von Basen ab. Im Ergebnis bildet sich ein Aldol. Der 2. Teil der Reaktion ist die Wasserabspaltung. Es entsteht ein ungesättigter Aldehyd. Der 2. Teil der Reaktion wird als Aldol-Kondensation bezeichnet. Der entstandene ungesättigte Aldehyd ist hier der Crotonaldehyd. Der Mechanismus der Reaktion wird durch die Einwirkung der Base auf die Carbonylgruppe des Aldehyds eingeleitet. Ein Proton wird abgerissen und es entsteht ein Carbanion. Das Carbanion ist ein typisches Nucleophil. Es reagiert mit einem zweiten Molekül Ethanal. Im Ergebnis entsteht ein Alkoholat-Ion. Das Alkoholat-Ion reagiert mit einem Proton und es bildet sich das Aldol. Die Reaktion ist wichtig für den molekularen Aufbau. In unserem Fall haben sich aus 2 C2-Einheiten eine C4-Einheit gebildet. Es kommt zu einer C-C-Knüpfung. Man kann die Aldol-Reaktion auch umgekehrt betrachten, als sogenannte Retroaldolreaktion. Sie hat in diesem Fall Bedeutung für die Strukturaufklärung von Molekülen, die aus einer Aldolreaktion entstanden sind. Ein interessantes Beispiel ist dieses Molekül, das aus einem Acetonmolekül und 2 Molekülen Benzaldehyd aufgebaut ist.  Ich danke für die Aufmerksamkeit. Alles Gute. Auf Wiedersehen.

2 Kommentare
  1. Bitte genau hinhören: Es geht um ein neues Beispiel. Woraus sich das zweifach ungesättigte Keton gebildet hat, habe ich eingezeichnet. Und mit zwei Molekülen Wasser entstehen aus einem Molekül der Verbindung ein Molekül Aceton und zwei Moleküle Benzaldehyd. Genau nach der Stöchiometrie.
    Alles Gute

    Von André Otto, vor etwa 6 Jahren
  2. Guten Tag Herr Otto. Das Video ist gut erklärt, bis in Minute 6:50 bei der Retro-Aldol-Reaktion plötzlich Benzaldehyd auftaucht. Dass das Crotonaldehyd mit Wasser zu 2 Propanal Molekülen reagiert versteh ich noch. Dadrunter taucht dann plötzlich eine Kette auf, mit 2 Benzaldehyden und Aceton. Wo kommt das her? Also ich verstehe den Schritt von Propanal zu dieser Benzaldehydkette nicht. Die Ausgangsstoffe vom Crotonaldehyd waren doch eine Base und 2 Moleküle Ethanal und nicht eine Benzaldehydverbindung?

    Von Skyliner88, vor etwa 6 Jahren

Aldol-Kondensation Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Aldol-Kondensation kannst du es wiederholen und üben.

  • Benenne die Verbindungsklassen folgender Strukturen.

    Tipps

    Nucleophile sind Lewis-Basen.

    Lewis Basen besitzen ein freies Elektronenpaar, mit dem sie z.B. die koordinative Bindungen ausbilden.

    Lösung

    Aldehyde sind chemische Verbindungen, die eine Carbonylgruppe, die eine Alkylgruppe und ein H-Atom als Rest trägt, besitzen.

    Ketone sind chemische Substanzen, die eine nicht endständige Carbonylgruppe tragen (zwei Alkylreste).

    Carbanionen entstehen, wenn vom $\alpha$-C-Atom eines Ketons oder Aldehydes ein Proton abstrahiert wird. Dabei verbleibt das einzige Elektron vom Wasserstoff am Kohlenstoff, deswegen ist dieser negativ geladen. Die Deprotonierung erfolgt mit Nucleophilen. Diese Nucleophile sind Lewis-Basen, d.h. alle Verbindungen, die ein freies Elektronenpaar haben wie z.B. Ammoniak, Alkohole oder Cyanid-Ionen.

  • Erläutere die Notwendigkeit der Base in der Aldolreaktion.

    Tipps

    Die Verteilung der Partialladungen - durch Elektronegativität der Atome - spielt eine große Rolle beim Vorhersagen von Reaktionen.

    Lösung

    Eine Lewis-Base wie das Hydroxid-Ion kann entweder als Nucleophil angreifen oder als Base ein Proton abstrahieren. Im Fall einer Carbonylverbindung dient der Zusatz von starken Basen wie z.B. ein Natriumethanolat, Natronlauge oder Butyllithium (BuLi) zum Deprotonieren einer C-H-aciden Position. Das Sauerstoffatom zieht aufgrund seiner hohen Elektronegativität (3,5) das Bindungselektronenpaar zu sich. Dieser starke -I-Effekt sorgt dafür, dass die Elektronendichte des Alkylrestes ebenfalls zum Carbonylzentrum gezogen wird. Deswegen wird die Bindung zwischen dem Kohlenstoffatom und dem Wasserstoffatom geschwächt, wodurch eine acide Position entsteht, die leicht ein Proton abgegeben kann. In einem Schritt kann immer nur ein Proton abstrahiert werden. Je nach Anzahl von elektronenziehenden Gruppen kann in einem nächsten Schritt noch ein zweites Proton abstrahiert werden (z.B. bei Malonsäurediethylester).

  • Zeige die Aldolreaktion mit Malonsäurediethylester.

    Tipps

    Die Reaktion dient zur Herstellung von Zimtsäure.

    NaOEt ist eine starke Base (Alkoholat).

    Lösung

    Der Malonsäurediethylester hat eine sehr stark C-H-acide Position zwischen beiden Carbonylgruppen. Ursache dafür ist, dass auf beiden Seiten eine stark elektronenziehende Gruppe vorhanden ist (-I-Effekt und -M-Effekt).

    Diese hohe Acidität wird für viele Reaktionen ausgenutzt. Zum Beispiel kann nach einer Deprotonierung an Benzaldehyd angegriffen werden. Durch eine Kondensationsreaktion bildet sich ein Michael-Akzeptor ($\alpha$,$\beta$-ungesättigte Carbonylverbindung). Wenn die Ester verseift werden (Rückreaktion der Veresterung), kann unter hohen Temperaturen decarboxyliert (Abspaltung von $CO_2$) werden, unter Bildung von Zimtsäure. Die Gesamtreaktion wird auch als Knoevenagel-Reaktion bezeichnet.

    Es existieren noch viele weitere Reaktionen mit Malonsäurediethylester, weil durch den Disäurecharakter ein breites Spektrum an Reaktion ermöglicht ist. Jedoch haben alle Reaktionen eine Gemeinsamkeit, nämlich die große Bedeutung, eine C-C- Bindungsknüpfung zu ermöglichen.

  • Erkläre den Reaktionsmechanismus der Aldolreaktion und -kondensation.

    Tipps

    Ein Carbanion ist ein Nucleophil.

    Das Carbonyl-Kohlenstoffzentrum hat immer einer positive Partialladung.

    Lösung

    Zwei Moleküle Acetaldehyd (Ethanal) reagieren im stark basischen Medium $(OH^-,~{C_2H_5O}^- )$ nucleophil miteinander (siehe Abbildung), wobei ein Aldehyd entsteht, der gleichzeitig ein Alkohol ist („Aldol“). Das ist die Aldol-Addition. Nach Abspaltung eines Moleküls Wasser aus der gebildeten Hydroxygruppe und einem H-Atom des benachbarten C-Atoms spricht man von Aldol-Kondensation. Es entsteht Crotonaldehyd. Die Aldol-Kondensation ist eine Addition zweier Carbonylverbindungen und hat damit eine große Bedeutung beim synthetischen Aufbau von Molekülen (C-C-Bindungsknüpfung).

  • Bestimme die Produkte folgender Aldolreaktionen.

    Tipps

    Es gibt zu jedem Reaktionspaar mehrere Reaktionsprodukte. Zeichne dir die Moleküle auf. Wo kann deprotoniert werden?

    Die Deprotonierung erfolgt immer in der $\alpha$-Position.

    Lösung

    Bei genauer Betrachtung der Eduktmoleküle fällt auf, dass meist mehrere Stellen vorhanden sind, die deprotoniert werden können. Bei symmetrischen Molekülen wie Aceton äußert sich das nicht im Reaktionsprodukt (siehe Abbildung oben). Beim Propanal ist - wie beim Aceton - auch nur ein Produkt möglich, da nur an einer Stelle deprotoniert werden kann.

    Reagiert allerdings das symmetrische Aceton mit dem Butanon, so sind insgesamt drei verschiedene Produkte möglich:

    • 4-Methyl-hex-3-en-2-on,
    • 5-Methyl-hex-4-en-3-on,
    • 3,4-Dimethyl-pent-3-en-2-on.
    Auch bei der Reaktion von Acetaldehyd mit Aceton ist nicht nur ein Produkt möglich, sondern:
    • Pent-3-en-2-on,
    • 3-Methyl-but-2-en-al.
    Anhand der Produktvielfalt ist erkennbar, dass die Reaktion häufig nur zwischen zwei identischen Molekülen oder zwischen einer nicht enolisierbaren und einer enolisierbaren Verbindung stattfindet. Bei nicht enolisierbaren Verbindungen trägt das $\alpha$-Kohlenstoffatom kein H-Atom mehr, z.B. Benzaldehyd. Dadurch können die deprotonierbaren Atome vermindert werden und die Reaktion ist kontrollierbar.

  • Ermittle die Produkte der retro-Aldolreaktion.

    Tipps

    Methyl-phenyl-keton (Acetophenon)

    Die Deprotonierung findet immer an einem $\alpha$-C-Atom statt.

    Rückschluss auf die Edukte bekommst du, wenn du an dem $\alpha$-C-Atom, welches als Carbanion angegriffen hat, die Bindung spaltest.

    Lösung

    Die retro-Aldolreaktion ist die Umkehrreaktion der Aldolreaktion. Um herauszufinden aus welchen Ketonen oder Aldehyden sich das Produkt der Aldolreaktion zusammensetzt, kannst du entweder den Mechanismus nachvollziehen, wenn wieder Wasser addiert wird (Addition von Wasser an Doppelbindung) oder du betrachtest das $\alpha$-Kohlenstoffatom.

    Wie in der Abbildung zu sehen ist, ist das $\alpha$-C-Atom von der Carbonylverbindung, die als Carbanion an eine andere oder die gleiche Carbonylverbidnung angegriffen hat, ein Substituent der Doppelbindung. Um herauszufinden, um welche zwei Carbonylverbindungen es sich handelt, spaltest du die Doppelbindung. Das so entstehende endständige Alken erhält ein Sauerstoffatom an der Doppelbindung, sodass eine Carbonylgruppe entsteht. So können beide Edukte relativ leicht ermittelt werden. (Außerdem klappt dieser Trick auch bei der Herstellung.)