Kohlensäure und Harnstoff
Erfahre, wie Kohlensäure und Harnstoff zusammenhängen! Kohlensäure ist eine alltägliche anorganische Säure, Harnstoff ein wichtiges Stoffwechselprodukt. Entdecke ihre Eigenschaften, Strukturen und vielseitigen Anwendungen. Interessiert? Dies und vieles mehr findest du im folgenden Text.
- Kohlensäure und Harnstoff – Chemie
- Kohlensäure und Harnstoff – Eigenschaften
- Kohlensäurederivate
- Kohlensäure und Harnstoff – Vorkommen und Verwendung

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.

Essigsäure – Herstellung

Essigsäure – Struktur

Essigsäure als Entkalker

Essigsäure – Herstellung

Ist Essigsäure eine starke Säure?

Reaktionen von Essigsäure

Essigsäure reagiert mit Alkohol

Die bunte Welt der Alkansäuren

Eigenschaften von Carbonsäuren

Carbonsäuren – Nomenklatur und Struktur

Harnstoffsynthese

Carbonsäuren mit zusätzlichen funktionellen Gruppen

Fruchtsäuren

Fruchtsäuren (Expertenwissen)

Carbonsäureanhydride

Carbonsäureamide

Kohlensäure und Harnstoff

Carbonsäurederivate

Decarboxylierung

Veresterung und Acylierung
Kohlensäure und Harnstoff Übung
-
Benenne die folgenden Moleküle.
TippsHarnsäure enthält das Harnstoffmolekül.
LösungHarnstoff ist ein Derivat der Kohlensäure. Seine Struktur ist also von der der Kohlensäure abgeleitet. Die beiden $OH$-Gruppen der Kohlensäure sind formal gegen $NH_2$- Gruppen im Harnstoff getauscht. Die Grundstruktur des Harnstoffs lässt sich auch in der Harnsäure und in der Base Guanidin wiederfinden.
Phosgen ist auch ein Derivat der Kohlensäure und kann formal als Säurechlorid betrachtet werden.
Die abgebildeten Strukturen werden hier mit ihren Trivialnamen benannt. Die einzelnen Verbindungen können aber auch mehrere Namen haben. Harnstoff ist auch bekannt unter:
- Kohlensäurediamid
- Carbamid
- Urea
- Carbonyldiamid
- Diaminomethanal
- Keratolytikum
Harnstoff wird in der Kosmetik in Cremen, in der Pharmazie in Medikamenten, aber auch als Stickstoffdünger auf den Feldern verwendet.
-
Vergleiche die Eigenschaften der Kohlensäure mit den Eigenschaften der Carbonsäuren.
TippsJe niedriger der pks-Wert, desto stärker ist die Säure.
LösungKohlensäure ist eine anorganische Säure mit der Formel $H_2CO_3$. Kohlensäure entsteht durch die Reaktion von Kohlenstoffdioxid $(CO_2)$ mit Wasser. Kohlensäure ist allerdings keine stabile Verbindung und zerfällt schnell wieder in die beiden Moleküle Wasser und Kohlenstoffdioxid.
$H_2CO_3 \rightarrow H_2O + CO_2$
Carbonsäuren sind wesentlich stabiler und liegen auch in isolierter Form vor.
Die Derivate der Kohlensäure sind allerdings, genau wie die Derivate der Kohlensäure, sehr stabil.
Kohlensäure und Carbonsäuren unterscheiden sich auch in Hinsicht auf ihre Säurestärke. Der pks-Wert der Kohlensäure ist größer als die pks-Werte der Carbonsäuren. Das Gleichgewicht bei der Kohlensäure liegt also stärker auf Seiten der undissoziierten Ionen als bei Carbonsäuren.
-
Entscheide, welche Verbindungen auch Derivate von Kohlensäure sind.
TippsDerivate sind sich in ihrer Molekülstruktur sehr ähnlich.
Phosgen ist auch ein Derivat von Kohlensäure, genauso wie Harnstoff.
LösungDer Begriff Derivat kommt von dem lateinischen Wort derivare (ableiten). Derivate sind also Ableitungen von einer Verbindung (Stammverbindung).
Derivate kannst du daran erkennen, dass sie eine ähnliche Struktur besitzen wie die Molekülstruktur, von der sie abgeleitet sind. Der Unterschied zur ursprünglichen Struktur ist, dass funktionelle Gruppen oder Wasserstoffatome durch andere Atome oder funktionelle Gruppen ersetzt wurden.
Beispiel:
Bei Diethylcarbonat befinden sich die $CH_3CH_2-$ Gruppe an den Stellen, an denen sich bei der Kohlensäure die Wasserstoffatome befinden. Es ist damit ein Derivat der Kohlensäure.Methanol ist dagegen kein Derivat der Kohlensäure, da die typische Grundstruktur der Kohlensäure sich nicht erkennen lässt. Die Derivate von Kohlensäure besitzen als Grundstruktur ein Kohlenstoffatom, das einmal doppelgebunden an einem Sauerstoffatom ist und zusätzlich je eine weitere Bindung zu einem Sauerstoffatom ausbildet.
Eigenschaften:
Derivate unterscheiden sich in ihren physikalischen und chemischen Eigenschaften oft stark von den Stammverbindungen.Beispiel:
Kohlensäure ist eine Säure (pks 6,5) und sehr instabil. Kohlensäure ist geruchlos und gut wasserlöslich.Diethylcarbonat hingegen ist eine farblose Flüssigkeit mit ätherischem Geruch. Diese Stoffverbindung gehört zu den Estern. Diethylcarbonat ist sehr stabil, es zerfällt erst ab etwa 270°C langsam zu Kohlenstoffdioxid, Ethanol und Ethen. Dieser Ester ist im Wasser unlöslich.
-
Bestimme die Säurestärke folgender Verbindungen.
TippspKs-Werte der Verbindungen:
- Harnsäure: 5,4
- Kohlensäure: 6,35
- Essigsäure: 4,76
- Guanidin: 12,1
LösungDie Säurestärke von Verbindungen wird in pKs-Werten angegeben. Je höher dieser Wert ist, desto schwächer ist die Säure.
Einteilung:
- pKs-Wert kleiner als 3,7: starke Säure
- pKs-Wert bis 7,2: mittelstarke Säure
- pKs-Wert ab 9,2: schwache Säure, starke Base
Essigsäure erhält ihre Säurestärke durch den -I-Effekt der $C=O$-Gruppe und die hohe Differenz der EN-Werte in der $OH$-Gruppe. Dadurch ist Essigsäure ein guter Protonendonator.
Harnsäure ist wegen ihrer tautomeren Form saurer als Essigsäure. Die Harnsäure kann in Lactam- und Lactimform vorkommen. In der Lactimform sind drei $OH-$Gruppen, an denen leicht Protonen abgespalten werden.
Guanidin ist durch Mesomerie sehr stabil. Hier werden durch die Mesomeriestabilisierung keine Protonen abgespalten.
-
Benenne die Eigenschaften von Harnstoff.
TippsGetrockneter Harnstoff bildet weiße nadelförmige Kristalle aus.
LösungVerwendung von Harnstoff
Da Harnstoff einen hohen Stickstoffanteil besitzt, wird es oft als Stickstoffdünger eingesetzt. Es löst sich gut im Wasser und kann so gut von den Pflanzen aufgenommen werden. Ist der Boden aber zu sauer, löst sich Harnstoff, in Verbindung mit Wasser, zu Ammoniak und Kohlenstoffdioxid.
Harnstoff kann im Labor in Form von hygroskopischen (wasseranziehenden), farblosen, nadelförmigen Kristallen synthetisiert werden. Diese Substanz wird auch in der Kosmetik (z.B für Feuchtigkeitscremes) verwendet. Es wird dort als Urea bezeichnet.
Harnstoff ist eine neutrale Verbindung, was gerade in der Kosmetik von Vorteil ist, da so der pH-Wert der Haut nicht maßgeblich verändert wird.
-
Erkläre, wie Harnstoff mit Kupfersulfat nachgewiesen werden kann.
TippsErzeugt $NaOH$ ein saures oder basisches Milieu?
LösungDer Nachweis von Harnstoff kann zum Beispiel angewendet werden, um die Reinheit von Kinderspielplätzen oder Schwimmbadwasser zu überprüfen.
Im basischen Milieu wird vom Stickstoffatom im Biuret ein Wasserstoffproton abgespalten. Biuret erhält dadurch eine negative Ladung und bildet zusammen mit dem Kupferion einen Chelatkomplex. Biuret ist hier der Chelat-Ligand, der das Metallion wie Krebsscheren umschließt. Die Harnstoffschmelze hat dabei mehrere Verbindungspunkte zum Kupferion und baut damit einen sehr stabilen Komplex auf.
Der Biuretnachweis wird auch verwendet, um lösliche Proteine nachzuweisen. Bei löslichen Proteinen bildet sich bei diesem Versuch allerdings meist ein hellblauer Komplex.
9.369
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.225
Lernvideos
38.691
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Chemie
- Periodensystem
- Ammoniak Verwendung
- Entropie
- Salzsäure Steckbrief
- Kupfer
- Stickstoff
- Glucose Und Fructose
- Salpetersäure
- Redoxreaktion
- Schwefelsäure
- Natronlauge
- Graphit
- Legierungen
- Dipol
- Molare Masse, Stoffmenge
- Sauerstoff
- Elektrolyse
- Bor
- Alkane
- Verbrennung Alkane
- Chlor
- Elektronegativität
- Tenside
- Toluol, Toluol Herstellung
- Wasserstoffbrückenbindung
- Fraktionierte Destillation Von Erdöl
- Carbonsäure
- Ester
- Harnstoff, Kohlensäure
- Reaktionsgleichung Aufstellen
- Redoxreaktion Übungen
- Stärke und Cellulose Chemie
- Süßwasser und Salzwasser
- Katalysator
- Ether
- Primärer Alkohol, Sekundärer Alkohol, Tertiärer Alkohol
- Van-der-Waals-Kräfte
- Oktettregel
- Kohlenstoffdioxid, Kohlenstoffmonoxid, Oxide
- Alfred Nobel
- Wassermolekül
- Ionenbindung
- Phosphor
- Saccharose Und Maltose
- Aldehyde
- Kohlenwasserstoff
- Kovalente Bindung
- Wasserhärte
- Peptidbindung
- Fermentation