Carbonsäureamide

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.

Essigsäure – Herstellung

Essigsäure – Struktur

Essigsäure als Entkalker

Essigsäure – Herstellung

Ist Essigsäure eine starke Säure?

Reaktionen von Essigsäure

Essigsäure reagiert mit Alkohol

Die bunte Welt der Alkansäuren

Eigenschaften von Carbonsäuren

Carbonsäuren – Nomenklatur und Struktur

Harnstoffsynthese

Carbonsäuren mit zusätzlichen funktionellen Gruppen

Fruchtsäuren

Fruchtsäuren (Expertenwissen)

Carbonsäureanhydride

Carbonsäureamide

Kohlensäure und Harnstoff

Carbonsäurederivate

Decarboxylierung

Veresterung und Acylierung
Carbonsäureamide Übung
-
Beschreibe die Synthese von Carbonsäureamiden.
TippsAmmoniak ist eine Base.
LösungEine häufig gut nutzbare Methode zur Synthese von Carbonsäureamiden verwendet als Vorläufermoleküle die Chloride der entsprechenden Carbonsäuren. In einigen Fällen ist auch die Synthese direkt aus der Carbonsäure möglich, meist steht dem jedoch die saure Eigenschaft der Carbonsäuren entgegen.
Zur Einführung der Amidgruppe werden Ammoniak oder primäre bzw. sekundäre Amine verwendet. Diese haben basische Eigenschaften. Daher kommt es mit Carbonsäuren häufig zu einer Säure-Base-Reaktion, das gewünschte Carbonsäureamid kann nicht erhalten werden. Das Produkt der Reaktion ist daher ein Ammoniumsalz des entsprechenden Carboxylat-Anions.
Wird statt der Carbonsäure ein Carbonsäurechlorid verwendet, kommt es zur gewünschten Reaktion. Das Chlorid-Ion wird abgespalten, ebenso ein $H^+$-Kation des Amins.
-
Gib die saure Hydrolyse von Carbonsäureamiden wieder.
TippsEin Edukt einer Hydrolysereaktion ist immer $H_2O$.
LösungBei der sauren Hydrolyse von Carbonsäureamiden kommt es zu einer Spaltung der Bindung zwischen dem C-Atom der Carbonsäuregruppe und dem N-Atom der Amidgruppe. $H^+$-Ionen dienen bei der Reaktion als Katalysator. Das Wassermolekül wird dabei in ein $OH^-$-Ion und ein $H^+$-Ion gespalten. Die Bindungsspaltung beim Carbonsäureamid-Molekül kann man sich so vorstellen, dass die Elektronen der Bindung komplett zum Stickstoffatom wandern. Es entsteht also ein Carbokation der Form $R-CO^+$ und ein Anion der Form $^-HN-R'$. Das erste Fragment bildet mit dem $OH^-$-Ion eine Carbonsäure, das zweite Fragment bildet mit dem $H^+$-Ion ein Amin.
Da in der Lösung eine höhere Konzentration an $H^+$-Ionen vorliegt, wird das Amin noch zum entsprechenden Ammonium-Kation protoniert.
-
Ermittle Edukte, Produkte und Nebenprodukte der Synthese von N,N-Dimethylacetamid.
TippsDimethylacetamid lässt sich aus Essigsäurechlorid herstellen.
Als Nebenprodukte einer Reaktion werden Reaktionsprodukte genannt, die zusätzlich zum gewünschten Produkt entstehen.
LösungEssigsäurechlorid, auch als Acetylchlorid bezeichnet, reagiert mit Dimethylamin. Bei diesen beiden Verbindungen handelt es sich daher um die Edukte der Reaktion.
Dabei entsteht das gewünschte Hauptprodukt der Reaktion, das Dimethylacetamid. Es wird das $Cl^-$-Anion des Acetylchlorids und das $H^+$-Ion des Dimethylamins in die Lösung abgegeben.
Da es sich bei Dimethylamin um eine Base handelt, ist diese Verbindung in der Lage, mit $H^+$-Ionen zu reagieren. Dabei entsteht das Dimethylammonium-Kation $((CH_3)_2NH_2)^+$. Dieses bildet mit dem Chlorid-Anion das Salz Dimethylammoniumchlorid, $(CH_3)_2NH_2Cl$. Dies ist das Nebenprodukt der Reaktion.
-
Bestimme die Reaktionsprodukte.
TippsDas Produkt einer Reaktion eines Säurechlorids mit einem Amin ist ein Carbonsäureamid.
Das Produkt einer Reaktion einer Carbonsäure und eines Amins ist meist ein Ammoniumsalz des Carboxylat-Anions.
Es gibt mehrere mesomere Grenzstrukturen, mit denen Carbonsäureamide dargestellt werden können.
LösungEssigsäure und Methylamin reagieren in einer Säure-Base-Reaktion miteinander. Die Essigsäure gibt ein Proton ab, dabei entsteht das Acetat-Anion $H_3CCOO^-$. Das Methylamin nimmt das Proton auf und reagiert damit zum Methylammonium-Kation $(H_3CNH_3)^+$. Das Reaktionsprodukt ist daher das Salz Methylammoniumacetat.
Bei den übrigen Reaktionen handelt es sich um Reaktionen zwischen Carbonsäurechloriden und Aminen bzw. Ammoniak. Das Reaktionsprodukt ist das entsprechende Carbonsäureamid.
Bei der ersten Verbindung ist zu beachten, dass nur die Carbonsäurechlorid-Gruppe mit dem Amin reagiert, die zweite Chlorido-Gruppe reagiert nicht mit dem Amin. Sind zwei Carbonsäurechlorid-Gruppen vorhanden, so können jedoch beide mit dem Amin bzw. Ammoniak reagieren.
-
Benenne die Carbonsäureamide.
TippsEin Imid verfügt über zwei Ketogruppen.
LösungDie gebräuchlichen Namen der Carbonsäureamide leiten sich von den Trivialnamen der Aldehyde ab. Mit der Endung -yl wird angezeigt, dass es sich um den entsprechenden Rest des Aldehyds handelt. Der Name des Amids wird angehängt.
Der Aldehyd Formaldehyd, $H_2CO$, bildet den Formylrest $-HCO$. Gemeinsam mit dem Ammoniak bildet sich das Formylamid, das auch als Formamid bezeichnet wird. Trägt der Amidrest noch Seitenketten, so werden diese als Erstes genannt, wie am Beispiel des Dimethylformamids deutlich wird.
Cyclische Carbonsäureamide werden als Lactame bezeichnet. Die Ringgröße wird dabei mit griechischen Buchstaben angegeben. Gezählt werden dabei nur die C-Atome, die nicht zur funktionellen Gruppe des Carbonsäureamids gehören. Der sechsgliedrige Lactamring wird daher als $\delta$-Lactam bezeichnet.
Als Imide werden Carbonsäureamide bezeichnet, bei denen zu beiden Seiten des Stickstoffatoms Ketogruppen vorhanden sind.
-
Analysiere die Mesomerie des $\gamma$-Lactams.
TippsAuf Grund der hohen Elektronegativität sind negativ geladene Sauerstoffatome energetisch günstig.
Ladungen, die an Kohlenstoffatomen lokalisiert sind, sind meist energetisch ungünstig.
LösungFür die Lactame lassen sich durch Verschieben von Elektronenpaaren eine Menge mesomere Grenzstrukturen finden, da die Moleküle cyclisch sind. Die meisten sind jedoch energetisch sehr ungünstig. Es ist daher unwahrscheinlich, dass diese Strukturen mit der Wirklichkeit übereinstimmen.
Die übliche Darstellung der Strukturformel von $\gamma$-Lactam ist im zweiten Bild in der oberen Reihe dargestellt. In dieser Darstellung ist an keinem Atom des Moleküls eine Ladung verzeichnet, das Sauerstoffatom und das Stickstoffatom tragen wie üblich freie Elektronenpaare. Diese Struktur hat einen großen Anteil an der tatsächlichen Struktur des Lactams.
Die zweite Struktur in der unteren Reihe erscheint ebenfalls sehr plausibel. Hier sind zwei Ladungen verzeichnet, eine negative am Sauerstoffatom mit seinen drei freien Elektronenpaaren sowie eine positive Ladung am Stickstoffatom, das sein freies Elektronenpaar zugunsten einer $C=N$-Doppelbindung abgegeben hat. Da auch positiv geladene Stickstoffatome sehr stabil sind, ist diese Struktur sehr plausibel und hat ebenfalls einen hohen Anteil an der tatsächlichen Struktur des Moleküls.
Die übrigen Strukturen sind hingegen energetisch vergleichsweise sehr ungünstig. Positive sowie negative Ladungen an Kohlenstoffatomen machen Moleküle instabil und sehr reaktiv. Ebenso ungünstig ist eine positive Ladung am Sauerstoffatom, wie bei der letzten Struktur gezeigt. Auch freie Elektronenpaare an Kohlenstoffatomen sind sehr ungünstig.
Die beiden wahrscheinlichsten mesomeren Grenzstrukturen bestimmen daher die chemischen Eigenschaften des $\gamma$-Lactams. Diese stabilisieren das Molekül gegenüber dem analogen cyclischen Ester, der zur Hydrolyse neigt. In dem Ester ist das Stickstoffatom gegen ein Sauerstoffatom ausgetauscht. Da eine positive Ladung am Sauerstoffatom ungünstig ist, spielt bei diesem Molekül die mesomere Struktur des Zwitterions keine Rolle. Das Lactam ist gegenüber dieser Verbindung also mesomeriestabilisiert.
9.360
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.211
Lernvideos
38.688
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Chemie
- Periodensystem
- Ammoniak Verwendung
- Entropie
- Salzsäure Steckbrief
- Kupfer
- Stickstoff
- Glucose Und Fructose
- Salpetersäure
- Redoxreaktion
- Schwefelsäure
- Natronlauge
- Graphit
- Legierungen
- Dipol
- Molare Masse, Stoffmenge
- Sauerstoff
- Elektrolyse
- Bor
- Alkane
- Verbrennung Alkane
- Chlor
- Elektronegativität
- Tenside
- Toluol, Toluol Herstellung
- Wasserstoffbrückenbindung
- Fraktionierte Destillation Von Erdöl
- Carbonsäure
- Ester
- Harnstoff, Kohlensäure
- Reaktionsgleichung Aufstellen
- Redoxreaktion Übungen
- Stärke und Cellulose Chemie
- Süßwasser und Salzwasser
- Katalysator
- Ether
- Primärer Alkohol, Sekundärer Alkohol, Tertiärer Alkohol
- Van-der-Waals-Kräfte
- Oktettregel
- Kohlenstoffdioxid, Kohlenstoffmonoxid, Oxide
- Alfred Nobel
- Wassermolekül
- Ionenbindung
- Phosphor
- Saccharose Und Maltose
- Aldehyde
- Kohlenwasserstoff
- Kovalente Bindung
- Wasserhärte
- Peptidbindung
- Fermentation