Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Primäre, sekundäre und tertiäre Alkohole

Alkohole sind organische Verbindungen mit sogenannten Hydroxygruppen. Doch was bedeuten primäre, sekundäre und tertiäre Alkohole? Primäre Alkohole haben einen Nichtwasserstoffnachbarn, sekundäre haben zwei und tertiäre sogar drei. Lerne mehr darüber und vertiefe dein Wissen! Interessiert? Dann findest du im Text weiterführende Informationen und Übungsmöglichkeiten.

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Primärer Alkohol, Sekundärer Alkohol, Tertiärer Alkohol Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 3.8 / 39 Bewertungen
Die Autor*innen
Avatar
André Otto
Primäre, sekundäre und tertiäre Alkohole
lernst du in der 9. Klasse - 10. Klasse

Beschreibung zum Video Primäre, sekundäre und tertiäre Alkohole

Die Stoffklasse der Alkohole hast du sicherlich schon kennengelernt. Aber wusstest du auch, dass man zwischen primären, sekundären und sogar tertiären Alkoholen unterscheiden kann? In diesem Video wird dir einfach erklärt, wie du anhand der Stellung der Hydroxygruppe feststellen kannst, um welche Art Alkohol es sich handelt. Außerdem lernst du, wie sich das Reaktionsverhalten verändert. Mit unseren Übungsaufgaben und Arbeitsblättern kannst du dein Verständnis zu diesem Thema testen.

Grundlagen zum Thema Primäre, sekundäre und tertiäre Alkohole

Was sind primäre, sekundäre und tertiäre Alkohole in der Chemie?

Alkohole (Chemie) sind nichtaromatische Kohlenwasserstoffe mit einer oder mehreren Hydroxygruppen ($\ce{OH}$-Gruppen). Methanol, Ethanol, Propanol und Butanol sind Beispiele für Alkohole, wobei in der Aufzählung die Anzahl der Kohlenstoffatome zunimmt. Aber was sind primäre, sekundäre und tertiäre Alkohole eigentlich? Und wieso unterscheidet man primäre, sekundäre und tertiäre Alkohole? Die Antworten auf diese Fragen findest du in diesem Text.

Einteilung der Alkohole

Alkohole können in ein- oder mehrwertige Alkohole eingeteilt werden. Man spricht dabei auch von der sogenannten Wertigkeit der Alkohole. Dies geschieht nach der Anzahl der $\ce{OH}$-Gruppen. Alkohole mit einer $\ce{OH}$-Gruppe bezeichnet man als einwertig und Alkohole mit mindestens zwei $\ce{OH}$-Gruppen als mehrwertige Alkohole.

Zweiwertige Alkohole werden als Diole und dreiwertige als Triole bezeichnet. Alkohole mit vier oder mehr OH-Gruppen werden als Polyole bezeichnet.

Zusätzlich können Alkohole nach der Zahl der Nichtwassertoffnachbarn des Kohlenstoffatoms unterschieden werden, an welchem sich die $\ce{OH}$-Gruppe befindet. Damit ist die Anzahl der Atome gemeint, die neben dem $\ce{O}$-Atom der $\ce{OH}$-Gruppe zusätzlich am $\ce{C}$-Atom gebunden sind, aber kein $\ce{H}$-Atom sind. Demzufolge teilt man in primäre, sekundäre und tertiäre Alkohole ein.

Primäre Alkohole sind Alkohole, bei denen es neben dem $\ce{O}$-Atom der $\ce{OH}$-Gruppe genau einen weiteren Nichtwasserstoffnachbarn des zugehörigen $\ce{C}$-Atoms gibt. Bei sekundären Alkoholen gibt es genau zwei weitere Nichtwasserstoffnachbarn. Bei tertiären Alkoholen gibt es drei.

Nichtwasserstoffnachbarn können vereinfacht als Rest $\ce{R}$ bezeichnet werden.

Allgemeine Formel primärer Alkohol, sekundärer Alkohol und tertiäer Alkohol

Warum unterscheidet man primäre, sekundäre und tertiäre Alkohole?

An einem Beispiel wollen wir uns nun ansehen, wieso diese Einteilung in primäre, sekundäre und tertiäre Alkohole sinnvoll ist. Bei Propanol kann die $\ce{OH}$-Gruppe entweder am ersten Kohlenstoffatom oder am zweiten Kohlenstoffatom sitzen. Zur Unterscheidung spricht man im ersten Fall von Propan-1-ol (1-Propanol), im zweiten Fall von Propan-2-ol (2-Propanol). Es handelt sich dabei um Isomere, deren Eigenschaften sich leicht unterscheiden. Durch die Kennzeichnung als primärer und sekundärer Alkohol können die beiden Isomere leicht unterschieden werden.

Was sind primäre Alkohole? – Definition

Ein primärer Alkohol ist ein Alkohol, bei dem die $\ce{OH}$-Gruppe an einem primären $\ce{C}$-Atom sitzt. Ein primäres $\ce{C}$-Atom ist ein Kohlenstoffatom, das nur mit einem weiteren $\ce{C}$-Atom verbunden ist. Ein Beispiel für einen primären Alkohol ist das 1-Propanol, welches in der folgenden Abbildung dargestellt ist.

Primärer Alkohol – Beispiel: 1-Propanol

Kennst du das?
Vielleicht hast du schon einmal einen Bioethanol-Kamin gesehen oder sogar benutzt. Bioethanol besteht hauptsächlich aus primären Alkoholen und wird aus nachwachsenden Rohstoffen gewonnen. Diese Alkohole verbrennen fast ohne Rückstände und sind etwas umweltfreundlicher als herkömmliches Brennmaterial. Wenn du mehr über die Struktur und Eigenschaften von Alkoholen lernst, verstehst du, warum Bioethanol so effizient und umweltfreundlich ist.

Was sind sekundäre Alkohole? – Definition

Bei sekundären Alkoholen ist das $\ce{C}$-Atom, an dem die $\ce{OH}$-Gruppe sitzt, mit zwei Kohlenstoffatomen verknüpft. Ein Beispiel für einen sekundären Alkohol siehst du in der folgenden Abbildung. Es handelt sich um 2-Propanol, oder auch Isopropanol genannt.

Sekundärer Alkohol – Beispiel: 2-Propanol

Wusstest du schon?
Sekundäre Alkohole, wie Isopropanol, sind nicht nur in Desinfektionsmitteln zu finden, sondern auch in deinem Medizinschrank. Es wird zum Beispiel in vielen Händedesinfektionsmitteln verwendet. So schützt du dich vor Keimen und Bakterien!

Was sind tertiäre Alkohole? – Definition

Bei tertiären Alkoholen ist das $\ce{C}$-Atom, das die $\ce{OH}$-Gruppe trägt, an drei weitere Kohlenstoffatome gebunden. Das tert-Butanol, welches in der folgenden Abbildung gezeigt ist, ist ein Beispiel für einen tertiären Alkohol.

Tertiärer Alkohol – Beispiel: tert-Butanol

Schlaue Idee
Wenn du Parfüm aufträgst, beachte, dass es häufig tertiäre Alkohole enthält. Diese Alkohole verleihen Parfüms ihre langanhaltenden Düfte, da sie schwerer verdampfen als primäre und sekundäre Alkohole.

Primäre, sekundäre und tertiäre Alkohole – Eigenschaften und Reaktionen

Die Stellung der Hydroxygruppe hat Auswirkungen auf die Eigenschaften und die Reaktionen der Alkohole.

  • Oxidation von Alkoholen: Ein primärer Alkohol wird durch Oxidation zu einem Aldehyd. Beispielsweise wird aus Ethanol unter Wasserabspaltung das Aldehyd Ethanal. Ein sekundärer Alkohol wird durch Oxidation zu einem Keton. Tertiäre Alkohole hingegen sind unter milden Bedingungen nicht oxidierbar.
  • Die Säurestärke nimmt bei den Alkoholen nach folgender Reihenfolge ab:
    Methanol > primärer > sekundärer > tertiärer
  • Die Basizität nimmt dagegen in gleicher Reihenfolge zu:
    Methanol < primärer < sekundärer < tertiärer Alkohol

Ein Alkohol ist umso saurer, je mehr Wasserstoffatome an dem Kohlenstoffatom sitzen, an dem sich die $\ce{OH}$-Gruppe befindet. Ein Alkohol ist umso basischer, je mehr Kohlenstoffatome an dem Kohlenstoffatom sitzen, an dem sich die $\ce{OH}$-Gruppe befindet.

Primäre, sekundäre und tertiäre Alkohole – Nachweis

Eine Methode zur analytischen Unterscheidung von Alkoholen ist die sogenannte Lucas-Probe. Der Alkohol wird mit einer Lösung aus konzentrierter Salzsäure und Zinkchlorid versetzt. Dabei gibt es drei mögliche Beobachtungen:

  1. sofortige milchige Trübung
  2. milchige Trübung nach etwa 5 Minuten
  3. milchige Trübung erst nach Erwärmung

Bei der Probe wird die alkoholische Gruppe gegen ein Chloratom ausgetauscht. Das erhaltene Chloralkan ist schlechter wasserlöslich als der Alkohol, daher kommt es zur Trübung. Die Reaktionsgeschwindigkeit steht in guter Übereinstimmung mit der Basizität des Alkohols. Demnach zeigt die Schnelligkeit, mit der die Trübung eintritt, die Art des Alkohols an, entsprechend der Reihenfolge:
tertiärer > sekundärer > primärer > Methanol

Ausblick – das lernst du nach Primäre, sekundäre und tertiäre Alkohole

Verstehe den komplexen Prozess der Alkoholfermentation und entdecke dessen Anwendung in Lebensmittelproduktion. Die Themen Bierbrauen und Destillation zeigen dir noch mehr Anwendungsbeispiele.

Zusammenfassung der primären, sekundären und tertiären Alkohole

In der folgenden Tabelle findest du die wichtigsten Informationen über die primären, sekundären und tertiären Alkohole übersichtlich zusammengefasst.

Alkohole Definition Beispiele Oxidationsprodukt
primäre Alkohole Anzahl der gebundenen $\ce{C}$-Atome am $\ce{C}$-Atom, das an die Hydroxygruppe gebunden ist: 1 Ethanol, 1-Propanol Aldehyd
sekundäre Alkohole Anzahl der gebundenen $\ce{C}$-Atome am $\ce{C}$-Atom, das an die Hydroxygruppe gebunden ist: 2 2-Propanol, 2-Butanol Keton
tertiäre Alkohole Anzahl der gebundenen $\ce{C}$-Atome am $\ce{C}$-Atom, das an die Hydroxygruppe gebunden ist: 3 tert-Butanol, tert-Pentanol keine Reaktion

Auch zum Thema primäre, sekundäre und tertiäre Alkohole haben wir Übungen und Arbeitsblätter vorbereitet. Du kannst dein neu gewonnenes Wissen also direkt testen. Viel Spaß!

Häufige Fragen zum Thema primäre, sekundäre und tertiäre Alkohole

Was ist ein primärer Alkohol?
Was ist ein sekundärer Alkohol?
Was ist ein tertiärer Alkohol?
Wann ist ein Alkohol primär?
Kann ein Alkohol primär und sekundär sein?
Teste dein Wissen zum Thema Primärer Alkohol, Sekundärer Alkohol, Tertiärer Alkohol!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Transkript Primäre, sekundäre und tertiäre Alkohole

Hallo und ganz herzlich willkommen, wir werden uns heute über „Primäre, sekundäre und tertiäre Alkohole“ unterhalten. Kleine Wiederholung Sicher erinnert ihr euch noch an die Alkohole. Man erhält Alkohole, indem man ein Wasserstoff – Atom eines Alkan – Moleküls gegen die Hydroxid – Gruppe -OH austauscht. Mit zunehmender Anzahl an Kohlenstoff – Atomen erhält man: Methanol, Ethanol, Propanol, Butanol usw. Isomerie Schaut euch einmal die Moleküle dieser Alkohole an. Methanol stellt nichts besonders dar: Seine Moleküle besitzen ein einziges Kohlenstoff – Atom. An diesem ist die Hydroxy – Gruppe befestigt. Die Stellung von OH spielt auch beim Ethanol keine Rolle. Denn es ist ganz gleich, wo die Gruppe sitzt. „Vorn“ und und „Hinten“ gibt es nicht. Interessant wird es beim Propanol. Die OH – Gruppe kann entweder am ersten Kohlenstoff – Atom oder am zweiten Kohlenstoff – Atom, sozusagen in der Mitte, sitzen. Zur Unterscheidung spricht man im ersten Fall von Propan – 1 -ol im zweiten Fall von Propan – 2 -ol. Es handelt sich um Isomere, deren physikalische Eigenschaften sich leicht unterscheiden. Primäre und sekundäre Alkohole

Wenn wir eine unverzweigte Kohlenstoffkette haben, so gibt es zwei prinzipiell verschiedene Möglichkeiten der Stellung der OH – Gruppe: 1. Am Anfang der Kette in Stellung 1. 2. In jeder anderen Position. Natürlich nicht an letzter Stelle; Denn das wäre ja wieder die Position 1.

Man unterscheidet nun: 1. Primäre Alkohole (mit OH in 1 – Stellung) und 2. Sekundäre Alkohole (mit OH in jeder anderen Stellung).

„Primus“ bedeutet „erster“: Das Kohlenstoffatom, an dem die OH – Gruppe sitzt, ist mit einem Kohlenstoffatom verknüpft. „Secundus“ bedeutet „zweiter“: Das Kohlenstoffatom, an dem die OH – Gruppe sitzt, ist mit zwei Kohlenstoffatomen verknüpft.

Tertiäre Alkohole Das Butanol – Molekül kann verzweigt sein. Wenn die OH – Gruppe an der Verzweigungsstelle sitzt, handelt es sich um das tertiäre Butanol. Man schreibt dann: tert – Butanol

Damit haben wir eine weitere Art von Alkoholen: 3. Tertiäre Alkohole „Tertius“ bedeutet „dritter“: Das Kohlenstoffatom, an dem die OH – Gruppe sitzt, ist mit zwei Kohlenstoffatom verknüpft.

Warum die Unterscheidungen? Als ich noch ein junger Synthesechemiker war, hatte ich Kalium mit Methanol zur Reaktion zu bringen. „Die reagieren miteinander wie Natrium mit Wasser“, sagte mein Chef. Und es war wirklich heftig! Später saß ich in einem Büro, an dessen Wand ein Metallschrank mit Chemikalien hing. Die Aufbewahrung erfolgte unordentlich: Eines Tages fiel daraus eine Chemikalienflasche zu Boden. „Kalium“ stand darauf. Die kleinen Metallstückchen fielen zu Boden und begannen sich zu entzünden. Ich erinnerte mich an das geschilderte Erlebnis und lief schleunigst, um tert-Butanol zu holen. Mit seiner Hilfe konnte ich das Natrium unschädlich machen. Der Alkohol reagierte still und friedlich mit dem Metall. Was bedeutet das? Das heißt, dass die Säurestärke bei den Alkoholen folgende Abfolge hat: Methanol > primär > sekundär > tertiär Andererseits nimmt die Basizität zu: Methanol < primär < sekundär < tertiär Für die organische Synthese bedeutet das, dass tertiäre Alkohole am leichtesten protoniert werden können. Wasser wird am leichtesten abgespalten und es bildet sich ein Alken. Aus tert - Butanol entsteht Isobuten, Isobutylen genannt. Aus diesem Grund stellt man tert - Butylester NICHT aus tert - Butanol sondern aus Isobutylen her.

Oxidation von Alkoholen Es gibt Methoden für die milde Oxidation von Alkoholen: Primäre Alkohole Beispiel: Ethanol gibt unter Wasserabspaltung den Aldehyd Ethanal. Allgemein: Ein primärer Alkohol liefert durch Oxidation einen Aldehyd. Sekundäre Alkohole Beispiel: Propan -2- ol gibt unter Wasserabspaltung das Keton Aceton. Allgemein: Ein sekundärer Alkohol liefert durch Oxidation ein Keton. Tertiäre Alkohole Tertiäre Alkohole sind unter milden Bedingungen nicht oxidierbar.

Unterscheidung Eine Methode zur analytischen Unterscheidung von Alkoholen ist die sogenannte Lucas - Probe. Der Alkohol wird mit einer Lösung aus konzentrierter Salzsäure und Zinkchlorid versetzt. Beobachtung: Es gibt drei Möglichkeiten. 1. Sofortige milchige Trübung 2. Milchige Trübung nach etwa 5 Minuten 3. Milchige Trübung erst nach Erwärmung Erklärung: Bei der Probe wird die alkoholische Gruppe gegen ein Chloratom ausgetauscht. Das Chloralkan ist schlechter wasserlöslich als der Alkohol. Daher kommt es zur Trübung. Die Reaktionsgeschwindigkeit ist in guter Übereinstimmung mit der Basizität des Alkohols: tertiär > sekundär > primär > Methanol

Zusammenfassung Ein Alkohol ist um so saurer, je mehr Wasserstoffatome an dem Kohlenstoffatom sitzen, wo sich die OH - Gruppe befindet: Methanol > Ethanol > Propan - 2 - ol > tert - Butanol Ein Alkohol ist um so basischer, je mehr Kohlenstoffatome an dem Kohlenstoffatom sitzen, wo sich die OH - Gruppe befindet: tert - Butanol > Propan -2- ol > Ethanol > Methanol Das ist bei chemischen Reaktionen zu berücksichtigen!

Das war es auch schon wieder für heute. Ich wünsche euch alles Gute und viel Erfolg!

Tschüs

Euer André

1 Kommentar
1 Kommentar
  1. Meiner Meinung nach ist das ein Super Video, es macht immer wieder Spaß ihre Videos anzusehen und mich dabei mit Wissen zu füllen.👍

    Von Hakon W., vor fast 5 Jahren

Primäre, sekundäre und tertiäre Alkohole Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Primäre, sekundäre und tertiäre Alkohole kannst du es wiederholen und üben.
  • Nenne die richtigen Positionen der OH-Gruppe für die verschiedenen Alkohole.

    Tipps

    Eine unverzweigte Kette kann keinen tertiären Alkohol liefern.

    Die Art des Alkohols hängt ab vom Grad der Verzweigung am Kohlenstoffatom C-OH.

    Lösung

    Alkohole können ab einer Kettenlänge von drei Kohlenstoffatomen Isomere bilden. Das bedeutet, dass sie sich in ihrer Struktur unterscheiden. Genauer, sie unterscheiden sich in der Position der OH-Gruppe.

    • Befindet sich die OH-Gruppe am Anfang/Ende des Moleküls, spricht man von primären Alkoholen. Das Kohlenstoffatom, an dem die OH-Gruppe gebunden ist, bindet nur zu einem weiteren Kohlenstoffatom.
    • Bei sekundären Alkoholen befindet sich die OH-Gruppe an einem Kohlenstoffatom, das noch an zwei weiteren Kohlenstoffatomen gebunden ist. Es bindet sich also in der Mitte einer Kette.
    • Tertiäre Alkohole können nur bei verzweigten Ketten auftreten. In dem Fall sitzt nämlich die OH-Gruppe genau an der Verzweigung. Das Kohlenstoffatom, an dem die OH-Gruppe gebunden ist, bindet also zu drei weiteren Kohlenstoffatomen.
    Das Reaktionsverhalten wird stark durch die Position der OH-Gruppe beeinflusst und ist daher von entscheidender Bedeutung.

  • Erkenne die beste Möglichkeit zur Beseitigung von Kalium-Resten.

    Tipps

    Die Reihenfolge entspricht der relativen Säurestärke der Verbindungen.

    Die Säurestärke von Alkoholen wird durch Alkyl-Gruppen am C-OH Kohlenstoffatom vermindert.

    Lösung

    Folgende Reihenfolge von Verbindungen war zu finden:

    Wasser > Methanol > Ethanol > Propan-2-ol > tert-Butanol

    Wasser zeigt noch eine recht hohe Reaktivität. Die Alkohole sind im Vergleich dazu viel weniger reaktionsfreudig. Bei der Reaktion entstehen das positive Kalium-Kation und ein negatives Alkoholat-Ion.

    Die Reaktivität der Alkohole fällt von Methanol über Ethanol (primärer Alkohol), Propan-2-ol (sekundärer Alkohol) bis tert-Butanol (tertiärer Alkohol).

    Daher wird tert-Butanol für die Beseitigung von Kalium-Resten verwendet.

  • Beschreibe Details der Reaktion von Glycerin mit Natrium.

    Tipps

    Wie ändert sich das Raktionsverhalten von Alkoholen mit Basen in der Folge primär-sekundär-tertiär?

    Der sterische Effekt führt zu einer Veränderung der Reaktionsgeschwindigkeit.

    Lösung

    Da das Molekül des Glycerins drei Hydroxy-Gruppen enthält, handelt es sich um einen Alkohol. Die Gruppen befinden dich an einer Propan-Kette. Glycerin verhält sich gegenüber dem reaktiven Natrium wie eine Säure. Die Produkte der Reaktion sind Alkoholate und elementarer Wasserstoff.

    Die randständigen Hydroxy-Gruppen reagieren zuerst. Bei der mittleren Hydroxy-Gruppe im Molekül handelt es sich um einen sekundären Alkohol. Bei den randständigen Gruppen handelt es sich jeweils um einen primären Alkohol.

    Der sterische Effekt führt dazu, dass die Reaktion mit der mittleren Hydroxy-Gruppe langsamer abläuft.

  • Beurteile, ob es sich bei der aromatischen Verbindung um einen Alkohol handelt.

    Tipps

    Eine Hydroxy-Gruppe, die mit einem aromatischen Molekül verknüpft ist, ergibt keinen Alkohol.

    Lösung

    Grundsätzlich zeigt die Hydroxy-Gruppe $-OH$ nicht immer einen Alkohol an. Beispiele dafür sind Wasser und Wasserstoffperoxid.

    Tertiäre Alkohole sind nur von Alkanen oder Alkyl - Resten abgeleitet. Daher ist die abgebildete Verbindung kein Alkanol.

    Die Verbindung ist tatsächlich viel saurer als ein Alkohol. Durch die strukturellen Merkmale kann also das Proton wesentlich leichter abgegeben werden als bei Alkanolen.

    Ein Alkohol darf durchaus Doppelbindungen im Molekül enthalten. Ein Beispiel dafür ist Crotylalkohol $CH_3-CH=CH-CH_2-OH$.

    Es handelt sich hier um die chemische Verbindung Phenol.

  • Bestimme den jeweiligen Alkohol richtig.

    Tipps

    Erinnere dich, was die Begriffe primus, secundus und tertius bedeuten und bringe sie mit der Anzahl entsprechender Kohlenstoffatome in Zusammenhang.

    Lösung

    Jede Hydroxy-Gruppe $-OH$ in einem Alkohol befindet sich an einem Kohlenstoffatom. Um zu wissen, ob es sich um einen primären, einen sekundären oder einen tertiären Alkohol handelt, muss man die Zahl der Kohlenstoffatome oder die Zahl der Wasserstoffatome, die sich am Hydroxyl-Kohlenstoffatom befinden, exakt kennen.

    • primär: 1 C-Atom, 2 H-Atome
    • sekundär: 2 C-Atome, 1 H-Atom
    • tertiär: 3 C-Atome, 0 H-Atome
    Primäre Alkohole, da jeweils 1 C-Atom und 2 H-Atome am -C-OH-Atom, sind:

    • $CH_3CH_2-OH$
    • $CH_3CH_2CH_2-OH$
    Sekundäre Alkohole, da jeweils 2 C-Atome und 1 H-Atome am -C-OH-Atom, sind:
    • $CH_3CH(OH)CH_3$
    • $CH_3CH(OH)CH_2CH_3$

    Tertiäre Alkohole, da jeweils 3 C-Atome und keine Atome am -C-OH-Atom, sind:

    • $(CH_3)_3C-OH$
    • $(C_2H_5)_3C-OH$
    Die hier verwendeten rationalen Strukturformeln kommen in der organischen Chemie sehr häufig vor, da sie kompakt sind.

  • Beschreibe Probleme bei der Herstellung von Essigsäure-tert- butylester.

    Tipps

    Je mehr Alkyl-Gruppen am ladungstragenden Kohlenstoffatom sitzen, umso stabiler ist das Carbenium-Ion.

    Lösung

    1. Tertiäre Alkohole

    Die Reaktion wird durch die Protonierung eingeleitet:

    $(CH_3)_3C\!-\!OH + H^{\oplus} \longrightarrow (CH_3)_3C\!-O\,^{\oplus}\!H_2$

    Daran schließt sich die Abspaltung eines Wasser-Moleküls an:

    $(CH_3)_3C\!-O\,^{\oplus}\!H_2 \longrightarrow {(CH_3)_3C}^{\oplus} + H_2O$

    Die Deprotonierung beschließt die Reaktion:

    ${(CH_3)_3C}^{\oplus} \longrightarrow (CH_3)_2C=CH_2 + H^{\oplus}$

    Der tertiäre Butanol geht eine unerwünschte Nebenreaktion ein. Daher kann der Ester nicht gebildet werden.

    2. Erklärung

    Warum findet die Veresterung mit Ethanol $CH_3CH_3\!-\!OH$ statt, mit tert-Butanol aber nicht? Für den Ablauf der Reaktion ist die relative Stabilität der gebildeten Carbenium-Ionen entscheidend.

    primär < sekundär < tertiär

    Der tertiäre Butanol liefert ein tertiäres Carbenium-Ion, Ethanol ein primäres Carbenium-Ion $({CH_3CH_2}^{\oplus})$. Die Stabilität des Ions bestimmt also die Reaktion. Bei primären Alkoholen wird kein Wassermolekül abgespalten, weil das so entstehende Carbenium-Ion nicht stabil wäre. Diese Alkohole können also zur Veresterung eingesetzt werden. Bei tertiären Alkoholen ist Wasser aber eine sehr gute Abgangsgruppe, da das entstehende Carbenium-Ion stabil ist. Diese Alkohole reagieren dann weiter zu Alkenen und können so nicht mehr verestert werden.

    Aus tert-Butanol kann daher durch die saure Veresterung kein tert-Butylessigsäureester hergestellt werden.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.793

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.837

Lernvideos

36.595

Übungen

33.929

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden