30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Ester

Bewertung

Ø 3.2 / 22 Bewertungen

Die Autor/-innen
Avatar
André Otto
Ester
lernst du in der 9. Klasse - 10. Klasse

Beschreibung Ester

Ester - Chemie

Sicherlich kennst du schon einige Moleküle mit unterschiedlichen funktionellen Gruppen wie zum Beispiel die Alkohole oder die Carbonsäuren. Doch was genau können wir mit solchen Molekülen machen? Gibt es neue Strukturen oder funktionelle Gruppen, die wir durch Reaktionen anderer funktioneller Gruppen erzeugen können? Ja, die gibt es. Aus einem Alkohol und einer Säure können wir sogenannte Ester herstellen. Doch was sind Ester genau?


Definition der Ester

Die Ester bilden eine eigene Stoffklasse in der Chemie. Hergestellt werden sie durch die Reaktion einer Säure mit einem Alkohol. Dabei kann es sich bei der Säure um eine anorganische Säure (z. B. Salpetersäure oder Schwefelsäure) oder um eine organische Säure (z. B. Essigsäure oder Buttersäure) handeln. Häufig werden jedoch organische Säuren, die sogenannten Carbonsäuren, eingesetzt. Dabei bilden sich die Carbonsäureester.
Spricht man von Estern, meint man in der Regel die Carbonsäureester. Sie bilden in den Naturwissenschaften die größte Gruppe der Ester. Dazu später mehr.
Die organischen Ester haben alle eine gemeinsame Struktur. Diese wird in vereinfachten Strukturformel häufig als $\ce{ R1-(C=O)-O-R2}$ oder $\ce{R1COOR2}$ geschrieben. allgemeine Strukturformel der Ester


Herstellung der Ester

Ester lassen sich durch die Reaktion einer Säure mit einem Alkohol herstellen. Zur Herstellung der Ester können unterschiedliche Alkohole mit unterschiedlichen Carbonsäuren kombiniert werden. Hierdurch ergibt sich eine Vielzahl an unterschiedlichen Strukturen der Ester.
Wird eine anorganische Säure wie beispielsweise die Phosphorsäure eingesetzt, bildet sich ein anorganischer Ester wie der Phosphorsäureester. Da neben dem Ester bei der Reaktion auch Wasser entsteht, handelt es sich bei der Esterbildung um eine Kondensationsreaktion.

$\ce{H3PO4 + OH-R -> O(OH)2P\color{red}{-O-}R + H2O}$

Für die Bildung der organischen Ester ist ein Katalysator notwendig. Hierfür wird in der Regel eine starke anorganische Säure eingesetzt.
Im Zusammenhang mit der Herstellung der Ester wirst du auch oft die Begriffe Verseifung und Hydrolyse sehen. Bei der Verseifung bzw. der Hydrolyse handelt es sich um die Umkehrreaktion der Esterbildung. Also der Zersetzung des Esters in seine Säure und seinen Alkohol.

Ein typisches Beispiel der Ester ist der Essigsäureethylester. Dieser wird durch eine Reaktion von Essigsäure mit Ethanol hergestellt.
Herstellung von Ester am Beispiel Essigsäureethylester


Eigenschaften der Ester

Die organischen Ester werden aufgrund ihrer Kettenlänge in zwei Gruppen eingeteilt. Von den Fruchtestern spricht man bei kurzkettigen Estern. Langkettige Ester werden hingegen als Fette oder Öle bezeichnet. Die Fette und Öle werden meist aus einem Dreifachalkohol (in der Regel Glycerin) sowie Alkansäuren (Fettsäuren) hergestellt. Im Alltag werden dir häufig die Fruchtester begegnen.

Eigenschaft Fruchtester
Aggregatzustand flüssig
Siedebereich niedrig siedend
Gefahren brennbar
Farbe farblos
Geruch obstartig
Polarität unpolar
Löslichkeit schlecht in Wasser löslich, aber gut in Benzin löslich
Verwendung als Lösemittel (z. B. Nagellackentferner oder Klebstoff) oder als Aroma


Vorkommen der Ester

Ester begegnen dir im Alltag, ohne das du es weißt. Viele der Lebensmittel, die du täglich zu dir nimmst, enthalten von Natur aus Ester. Besonders in Obst kommen Ester häufig vor. Den Butansäuremethylester findest du beispielsweise unter anderem in Ananassen, Äpfeln sowie Erdbeeren. Weitere natürliche Quellen für Fruchtester sind unter anderem:

  • Lebensmittel wie beispielsweise Honig und Käse,
  • Genussmittel wie Wein und Rum,
  • Gewürze wie Zimt,
  • Blüten und Blätter wie Jasmin, Kiefer, Lavendel und Salbei.

Auch mit den synthetisch hergestellten Estern wirst du sicherlich im Alltag schon einmal Kontakt gehabt haben. Essigsäureethylester wird zum Beispiel in Nagellackentfernern eingesetzt und ist in vielen Klebstoffen vorhanden.

Aber auch Fette und Öle findest du oft im Alltag. Olivenöl, Sonnenblumenöl oder auch Kokosöl. Du findest sie aber auch in Bienenwachs wieder.

Der wohl bekannteste anorganische Ester ist Nitroglycerin. Es handelt sich hierbei um einen Ester aus Glycerin und der Salpetersäure. Nitroglycerin, chemisch korrekt als Glycerinnitrat bezeichnet, ist für die Explosivität von Dynamit verantwortlich. Anwendung des Esters Nitroglycerin im Dynamit

Zum Video

In diesem Video geht es um Ester. Dazu zeigt das Video zuerst, wie man Ester herstellt und welche Vertreter wichtig sind. Ester sind wichtige organische Verbindungen von Säuren und Alkoholen die vor allem in der Lebensmittelindustrie eingesetzt werden. Die wichtigsten Vertreter sind dabei die Carbonsäureester. Im Anschluss wird auf Fette und Öle als Vertreter eingegangen. Zum Schluss werden dann noch Ester aus anorganischen Säuren und einfache Carbonsäureester gezeigt und erklärt. Zum Thema Ester findest du auch interaktive Übungsaufgaben und ein Arbeitsblatt.

Transkript Ester

Hallo und herzlich willkommen. Dieses Video heißt Ester. Du kennst bereits Alkanole und Alkansäuren und vielleicht auch Alkohole und Carbonsäuren. Nachher kannst du über die Herstellung, Vorkommen, die Eigenschaften und die Verwendung von Estern berichten. Der Film besteht aus sechs Abschnitten: 1. Herstellung, 2. Verschiedene Ester, 3. Fette und Öle, 4. Ester aus anorganischen Säuren, 5. Einfache Carbonsäureester und 6. Zusammenfassung. 1. Herstellung: Die Ester sind eine Stoffklasse. Bei der Reaktion eines Alkohols mit einer Säure entsteht ein Ester und außerdem Wasser. Alkohole haben die Hydroxylgruppe OH. Bei den Alkoholen kann es sich um Alkanole handeln oder auch um andere Alkohole. Säuren können die Carboxylgruppe COOH enthalten. Das sind organische Säuren. Die einfachsten davon sind die Alkansäuren. Es gibt aber auch noch mehr organische Säuren. Der Überbegriff ist dann Carbonsäuren, aber auch anorganische Säuren können Ester bilden. Zum Beispiel die Schwefelsäure, H2SO4 oder die Salpetersäure HNO3. Mitunter benötigt man noch eine starke Säure als Katalysator. Und zwar immer dann, wenn Carbonsäuren reagieren. 2. Verschiedene Ester: Wir haben bereits gelernt, dass Ester durch Reaktion anorganischer Säuren entstehen können. Die meisten Ester jedoch entstehen aus Carbonsäuren. Diese enthalten die Carboxylgruppe COOH. Sowohl Fette als auch Öle sind Ester. Und schließlich gibt es einfache Carbonsäureester. 3. Fette und Öle: Beispiele für Fette und Öle sind Butter, Schmalz und Pflanzenöl. Hier haben wir die Formel für ein Fett. Der Ester hier enthält immer einen Dreifachalkohol, das Glycerin. Der zweite Bestandteil sind langkettige Säuren, meistens Alkansäuren, man nennt sie auch Fettsäuren. Aus beiden Bestandteilen entsteht ein Dreifachester unter Abspaltung von Wasser. 4. Ester aus anorganischen Säuren: Ein solcher Ester ist Hauptbestandteil des Dynamits. Umgangssprachlich sagt man Nitroglycerin, aber chemisch exakter ist es besser Glycerinnitrat zu sagen. Die chemische Formel sieht so aus. Der Alkohol ist das Glycerin. Die Säure ist die Salpetersäure. Dynamit ist ein Sprengstoff, meist für friedliche Zwecke. 5. Einfache Carbonsäureester: Hier gilt schon konkreter: Alkohol plus Carbonsäure reagieren zu Ester plus Wasser. Die Carbonsäure enthält nur eine einzige Carboxylgruppe, der Alkohol nur eine Hydroxylgruppe. Und hier ein Beispiel: C2H5OH plus CH3COOH reagieren zum entsprechenden Ester plus Wasser. Man benötigt eine starke Säure, häufig wird Schwefelsäure genommen. Wie heißen die beteiligten Verbindungen? Ethanol, Ethansäure und Ethylethanoat. Häufig nennt man den Ester Essigsäureethylester. Statt Ethanol kann man auch andere Alkohole verwenden, die Alkanole Propanol, Butanol oder Pentanol und so weiter. Und statt Ethansäure kann man Propansäure, Butansäure, Pentansäure und so weiter, verwenden. Und auch die kleinsten Moleküle kann man einsetzen: Methanol und Methansäure. Und noch ein Beispiel. Nehmen wir die Verbindungen ganz unten. Pentanol und Pentansäure bilden bei der chemischen Reaktion Pentylpentanoat. Man sagt dazu auch Valeriansäurepentylester. Alle Alkohole sind mit allen Säuren kombinierbar. Bei den Estern gibt es zwei Möglichkeiten. Sie können A; kurzkettig sein. Diese Ester nennt man Fruchtester. Sind die Ester langkettig, handelt es sich um Wachse. Beginnen wir mit A, Fruchtester. Das sind die Ester, die über relativ kurze Ketten verfügen. Und hier ein Vertreter. Butansäuremethylester. Er ist enthalten in Ananas, in Äpfeln und in Erdbeeren. Fruchtester sind flüssig, sie sind niedrig siedend, farblos und brennbar. Fruchtester haben einen obstartigen Geruch. Ihre Moleküle sind wenig polar. Daher sind sie mit Wasser schlecht mischbar. Gut mischbar sind sie mit wenig polaren Lösungsmitteln wie Benzin. Fruchtester sind daher gute Lösungsmittel. Durch den angenehmen Geruch kann man sie als Aromen einsetzen. Methylacetat findet man in Kleber. Ethylacetat ist in Nagellackentferner enthalten. Man benutzt Fruchtester als Lösungsmittel oder zur Verdünnung, für Nitrocellulose, Harze, Lacke und Farben. Wie schon der Name sagt, findet man Fruchtester zum Großteil in Früchten, in Aprikosen, Bananen, Birnen, Brombeeren sowie in Himbeeren, Kirschen, Orangen, Pfirsichen und Weintrauben und es gibt noch weitere Beispiele. Auch Blüten und Blätter enthalten Fruchtester. Zum Beispiel Jasmin, Kiefern, Lavendel und Salbei. Und auch in Lebensmitteln, Gewürzen und Genussmitteln findet man Fruchtester, in Honig, in Käse, in Pastinak, das ist eine Wurzel, im Zimt und sogar im Rum und im Wein sind Fruchtester. Kommen wir nun B zu den Wachsen. Hier ist das Molekül langkettig. Wichtige Beispiele sind Bienenwachs und Walrat aus dem Wal. Ein wichtiges Wachs ist Montanwachs. Man gewinnt es aus trockener Kohle. 6. Zusammenfassung: Ein Alkohol reagiert mit einer Säure zu einem Ester und Wasser. Der Ester kann einmal durch anorganische Säuren gebildet werden oder durch organische Säuren, die die Carboxylgruppe COOH enthalten. Hier unterscheidet man zwischen Fetten und Ölen, sowie einfachen Carbonsäureestern. Die einfachen Carbonsäureester unterteilt man in Fruchtester und Wachse. Fruchtester sind flüssig, brennbar, duftend und die Moleküle sind wenig polar. Man findet sie unter anderem in Obst und in Blüten. Verwendet werden sie für Aromen und als Lösungsmittel. Und zum Ende noch einen Blick auf die vielen Quellen der Fruchtester. Und schon wieder ist das Video aus. Ich wünsche euch alles Gute und viel Erfolg. Tschüss.

Ester Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Ester kannst du es wiederholen und üben.
  • Formuliere die allgemeine Herstellungsreaktion eines Esters.

    Tipps

    Dei Veresterung ist eine Kondensationsreaktion.

    Dabei wird Wasser frei.

    Lösung

    Ausgangsstoffe für alle Ester sind ein Alkohol und eine Säure. Die OH-Gruppe des Alkohols reagiert also mit dem Proton der Säure und wird abgespalten. Es ergibt sich eine neue Bindung. Eine Ester-Gruppe ist entstanden: $(-COO-)$. Ester haben vielfältige Erscheinungsformen. Es gibt flüssige, leichtflüchtige und auch wachsartige Ester. Sie kommen in Früchten, Fetten und vielen anderen Stoffen unseres Alltags vor. Aus Polyester, also Stoffen mit vielen Ester-Gruppen, bestehen Flaschen und auch Kleidung.

  • Gib die Verwendungsmöglichkeiten von Estern an.

    Tipps

    Ester werden mitunter als Lösemittel eingesetzt.

    Dynamit ist Glycerintrinitrat.

    Lösung

    Ester besitzen eine Ester-Gruppe zwischen zwei organischen Resten. Es gibt kurzkettige und auch langkettige Ester. Sie besitzen verschiedene Eigenschaften und eignen sich daher für verschiedene Zwecke. Kurzkettige Ester dienen als Lösemittel in Lacken und Klebstoffen, aber auch als Aromastoff für z.B. Limonade.

    Es gibt auch Ester aus anorganischen Säuren. Ein Beispiel dafür ist das Glycerintrinitrat. Im Volksmund wird es fälschlicherweise als Nitroglycerin bezeichnet. Dieser Stoff ist im von Alfred Nobel erfundenen Dynamit enthalten.

  • Benenne die Ester aus den gegebenen Ausgangsstoffen.

    Tipps

    Der Name ergibt sich aus der Säure, dem Rest des Alkohols und der Endung Ester.

    Eine andere Form der Benennung setzt sich zusammen aus dem Rest des Alkohols und dem Carboxylat-Ion der Säure.

    Lösung

    Der Name eines Esters setzt sich immer aus den Edukten zusammen. Du kannst also immer von den Edukten auf das Produkt schließen und umgekehrt. Im Bild siehst du den Ester Ethansäureethylester. Dieser wird auch als Ethylacetat bezeichnet. Er ist aus der Reaktion von Essigsäure und Ethanol entstanden. Es handelt sich um einen kleinen, leichtflüchtigen Ester.

    Reaktionsgleichung:
    $C_2H_5OH~+~CH_3-COOH \longrightarrow~C_2H_5-OOC-CH_3~+~H_2O$

  • Beschreibe Fruchtester und ihr Vorkommen.

    Tipps

    Die Verwendung leitet sich aus den Eigenschaften ab und folgt daher am Ende.

    Beginne mit dem Aufbau der Fruchtester.

    Lösung

    Fruchtester sind kurzkettige Ester. Da ihre Moleküle relativ klein und wenig polar sind, bestehen keine hohen Anziehungskräfte innerhalb der Substanz. Es können also viele Moleküle aus der Oberfläche in die Gasphase eintreten. Daher sind Fruchtester leicht flüchtig und man riecht sie sehr deutlich, da sich viele Moleküle in der Luft befinden. Ethyl- und Butylacetat sind besonders wichtige Lösemittel in der Lackindustrie. Sie werden auch zum Säubern von Oberflächen eingesetzt. Butylacetat besitzt einen Geruch, der an Eisbonbons erinnert.

  • Beschrifte die Teile des gezeigten Fettes.

    Tipps

    Glycerin besitzt die Summenformel $C_3H_5(OH)_3$. Es ist also ein dreifacher Alkohol.

    Fettsäuren sind lange Kohlenwasserstoffketten mit einer Säuregruppe.

    Lösung

    Fette entstehen durch die Reaktion des Dreifachalkohols Glycerin mit drei Fettsäuren. Es bildet sich ein Dreifachester und Wasser wird abgespalten. Im Bild siehst du ein Beispiel für ein solches Molekül in Skelettschreibweise. Fette sind aufgrund der langen unpolaren Fettsäure-Reste nicht mit Wasser mischbar. Sie bilden einen Grundnährstoff und liefern dem Körper viel Energie. Die Fettsäuren, besonders die ungesättigten Fettsäuren, sind wichtig für den Aufbau körpereigener Stoffe.

  • Beschreibe die Seifenherstellung aus Fetten.

    Tipps

    Bei der Verseifung handelt es sich um eine Hydrolyse.

    Die saure Verseifung stellt die Rückreaktion der Esterherstellung dar. Die saure Verseifung ist daher umkehrbar.

    Lösung

    Durch die Spaltung der Esterbindung werden die Fettsäure-Reste frei. Diese tragen eine negative Ladung am Carboxylat-Ion $(-COO^-)$. Das Kation der zur Spaltung eingesetzten Base lagert sich nun hier an. Der Fettsäure-Rest besitzt außerdem noch eine lange organische Kette. Diese ist unpolar, da sie nur aus Kohlenstoff- und Wasserstoffatomen besteht. Dieser Teil, auch als Schwanz bezeichnet, ist demnach hydrophob, also wasserabweisend, und lipophil (löslich in Fetten). Der Kopf dagegen trägt die negative Ladung und das Kation. Dieser Teil ist polar und damit hydrophil (wasserlöslich).

    Diese Tenside können also zum Teil in polaren und zum anderen Teil in unpolaren Lösemittel gelöst werden. Sie sind daher grenzflächenaktiv. Sie lagern sich an der Phasengrenze dieser Lösemittel an. Dadurch ermöglichen sie ein Ablösen von unpolarem Schmutz im Lösemittel Wasser (Waschvorgang).

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

10.800

Lernvideos

44.109

Übungen

38.757

Arbeitsblätter

24h

Hilfe von Lehrer/
-innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert/-innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden