Dipole
Dipole in der Chemie sind Moleküle, die entgegengesetzte elektrische Pole haben. Sie entstehen durch die asymmetrische Ladungsverteilung entlang einer Atombindung. Ein Molekül ist ein Dipol, wenn mindestens eine polare Atombindung vorhanden ist. Mögliche Dipole hängen auch von der Molekülstruktur ab. Interessiert? All das und noch viel mehr findest du im vollständigen Text!
die Noten verbessern
In wenigen Schritten dieses Video freischalten & von allen sofatutor-Inhalten profitieren:
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Das Dipol Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?
Quiz startenDu musst eingeloggt sein, um bewerten zu können.
Wow, Danke!
Gib uns doch auch deine Bewertung bei Google! Wir freuen uns!
Grundlagen zum Thema Dipole
Dipole in der Chemie
Viele Eigenschaften von Stoffen wie der Siedepunkt oder allgemein die chemische Reaktivität hängen damit zusammen, ob die Moleküle, aus denen der Stoff besteht, elektrische Dipole sind. Daher ist es wichtig, gut zu verstehen, was ein Dipol ist.
Was ist ein Dipol? – Definition
Die Bezeichnung Dipol steht allgemein für eine Anordnung mit zwei (= Vorsilbe di-) entgegengesetzten Polen. In der Chemie beschränken wir uns auf elektrische Dipole mit einem positiv geladenen und einem negativ geladenen Pol. Ein nach außen neutrales, also ungeladenes Molekül ist dann ein elektrischer Dipol, wenn die Verteilung der Elektronen auf den Bindungen zwischen den Atomen asymmetrisch, also ungleichmäßig ist. Dann kann sich ein positiver und ein negativer Pol ausbilden und entlang der Atombindung entsteht zwischen den Atomen ein gerichtetes Dipolmoment $\vec{p}$. Da es eine Richtung hat, wird das Symbol $\vec{p}$ als Vektor geschrieben.
Ein Dipol ist eine Anordnung mit zwei Polen, zum Beispiel zwei entgegengesetzten elektrischen Ladungen. In einem Molekül kann sich ein Dipol ausbilden, wenn die Elektronen entlang einer Atombindung asymmetrisch verteilt sind. Aufgrund der ungleichmäßigen Ladungsverteilung entsteht ein gerichtetes Dipolmoment $\vec{p}$.
Wann entsteht ein Dipol?
Die erste Voraussetzung dafür, dass sich zwischen Atomen in einer Atombindung ein Dipolmoment $\vec{p}$ ausbildet, ist ein Unterschied in der Elektronegativität, kurz $EN$. Die Elektronegativität beschreibt die Fähigkeit eines Elements, Bindungselektronen (also die Elektronen gemeinsamer, bindender Elektronenpaare) an sich zu ziehen. Da Atome des gleichen Elements die gleiche Elektronegativität haben, besteht nur zwischen Atomen unterschiedlicher Elemente eine Elektronegativitätsdifferenz. Diese muss groß genug sein, um eine polare Atombindung auszubilden.
Eine hohe Elektronegativität haben die Elemente Fluor
Ein Dipol entsteht entlang der Atombindung zwischen einem Element hoher Elektronegativität und einem Element geringer Elektronegativität. Das Atom des Elements mit der höheren Elektronegativität zieht die Bindungselektronen stärker an sich, dadurch entsteht eine ungleichmäßige Ladungsverteilung – die Bindung ist polar. Meist handelt es sich bei beiden Bindungspartnern um Nichtmetalle, da diese vorzugsweise Atombindungen, also kovalente Bindungen, bilden. Allerdings weist nur eine polare, kovalente Bindung ein ausreichend starkes Dipolmoment auf, um einen Dipol bilden zu können.
Die zweite Voraussetzung liegt in der Symmetrie des Moleküls. Ein Molekül ist dann ein Dipol, wenn die Symmetrie der Molekülstruktur die Dipolmomente entlang von Bindungen nicht insgesamt wieder aufhebt, also die gerichteten Dipolmomente einzelner, gleichwertiger Bindungen nicht genau entgegengesetzt zueinander verlaufen. Du findest weiter unten mit dem Molekül Kohlenstoffdioxid ein Beispiel dafür.
Darstellung eines Dipolmoleküls
Um in der Chemie Unterschiede in der Elektronegativität deutlich zu machen, schreibt man die Partialladungen $\delta^+$ und $\delta^-$ an die Atome. Atome mit hoher Elektronegativität bekommen eine negative Partialladung $\color{blue} \delta^-$, da sie die Elektronen der Bindung zu sich ziehen. Atome mit geringer Elektronegativität bekommen eine positive Partialladung $\color{red} \delta^+$, da auf ihrer Seite der Bindung eine geringere Elektronendichte herrscht.
Beispiel Chlorwasserstoff
In dem Molekül Chlorwasserstoff mit der Summenformel $\ce{HCl}$ hat Chlor eine deutlich höhere Elektronegativität als Wasserstoff. Daher bildet sich zwischen beiden Atomen ein Dipolmoment $\vec{p}$ aus:
${}^{\color{red}\delta^+} \ce{H}~ \xrightarrow{\vec{p}} ~\ce{Cl}~{}^{\color{blue}\delta^-}$
In der Chemie symbolisiert manchmal auch ein Dreieck anstatt eines Bindungsstriches die asymmetrische Verteilung der Ladungsträgerdichte:
${}^{\color{red}\delta^+} \ce{H} \blacktriangleleft \ce{Cl}~{}^{\color{blue}\delta^-}$
Das Molekül Chlorwasserstoff ist ein Dipolmolekül. Es gibt eine polare Atombindung und damit ein Dipolmoment. Als Ganzes gesehen ist Chlorwasserstoff ein polarer Stoff und Chlorwasserstoffmoleküle sind Dipole.
Beispiel Wasserstoff
Wasserstoff
Das Molekül Wasserstoff ist unpolar und somit kein Dipol.
Beispiel Kohlenstoffdioxid
Die zweite Voraussetzung dafür, dass ein Molekül ein Dipol ist, liegt in der geeigneten Molekülsymmetrie. Kohlenstoffdioxid
${}^{\color{blue}\delta^-}{\underline{\overline{\ce{O}}}}~=~{\ce{C}}~{}^{\color{red}\delta^{+}}=~{\underline{\overline{\ce{O}}}}~{}^{\color{blue}\delta^-}$
${}^{\color{blue}\delta^-}{\underline{\overline{\ce{O}}}}~ \xrightarrow{\vec{p_1}} ~\ce{C}~{}^{\color{red}\delta^{+}} \xleftarrow{\vec{p_2}} ~{\underline{\overline{\ce{O}}}}~{}^{\color{blue}\delta^-}$
$\vec{p_1} + \vec{p_2} = 0$
Daher ist das Molekül Kohlenstoffdioxid insgesamt unpolar und somit kein Dipol.
Beispiel Wasser
Bei Wasser $\left( \ce{H2O} \right)$ zeigt die Strukturformel ein gewinkeltes Molekül:
Im Wassermolekül hat der Sauerstoff eine viel höhere Elektronegativität als die beiden Wasserstoffatome. Somit werden die Bindungselektronen näher zum Sauerstoff hingezogen. Hier gibt es eine negative Partialladung und an den Wasserstoffatomen je eine positive Partialladung. Entlang der beiden
Daher ist das Wassermolekül polar und ein Dipol.
Wie man sieht, hängt das Vorhandensein eines Gesamtdipolmomentes nicht nur von der Elektronegativität der beteiligten Atome ab, sondern auch von der Molekülstruktur. So können die Moleküle eines Stoffes wie $\ce{CO2}$ zwar polare Atombindungen enthalten, die Moleküle insgesamt allerdings unpolar und damit keine Dipole sein.
Dipole – ein Experiment
Mit einem kleinen Experiment kannst du zu Hause ganz einfach eine Eigenschaft des Wassers untersuchen, die daraus folgt, dass Wassermoleküle Dipole sind: Reibe einen Kamm aus Kunststoff (oder einen Luftballon) an einem Tuch, lade ihn auf diese Weise elektrostatisch auf und halte ihn dann in die Nähe eines dünnen Wasserstrahls. Du wirst sehen, dass der Wasserstrahl zum Kamm hin abgelenkt wird, sich also verbiegt! Der Grund dafür liegt darin, dass sich die Wassermoleküle als Dipole mit den Seiten der positiven Partialladungen hin zum negativ aufgeladenen Kamm ausrichten und dann von diesem angezogen werden.
Zusammenfassung der Dipole
- Ein Dipol ist eine Anordnung mit zwei Polen. In der Chemie sind damit in der Regel die elektrischen Pole eines Dipolmoleküls gemeint.
- Damit ein Molekül ein Dipol sein kann, muss es mindestens eine polare Atombindung im Molekül geben. Durch die asymmetrische Ladungsverteilung entlang der polaren Atombindung bildet sich ein Dipolmoment.
- Da Dipolmomente gerichtet sind, können sich gleich starke Dipolmomente entlang entgegengesetzt verlaufender Bindungen gegenseitig aufheben. Ist dies in einem Molekül der Fall, wie bei $\ce{CO2}$, ist das Molekül kein Dipol.
- Die Dipolmomente mehrerer polarer Atombindungen in einem Molekül können sich auch zu einem Gesamtdipolmoment aufaddieren. Das ist im Wassermolekül $\left( \ce{H2O} \right)$ der Fall, das einen besonders starken Dipol darstellt.
- Um zu entscheiden, ob die Moleküle eines Stoffes Dipole sind, muss demnach sowohl die Elektronegativitätsdifferenz der Bindungspartner als auch die Molekülstruktur berücksichtigt werden.
Du findest hier auch Übungen und Arbeitsblätter. Beginne mit den Übungen, um gleich dein neues Wissen über Dipole zu testen.
Häufig gestellte Fragen zum Thema Dipol
Wasser ist ein polarer Stoff und Wassermoleküle sind Dipole, weil die beiden kovalenten $\ce{OH}$-Bindungen im Molekül polar sind, also zu Partialladungen führen, und sich die Dipolmomente der beiden Bindungen nicht gegenseitig aufheben.
Ein elektrischer Dipol entsteht, wenn es zwei entgegengesetzte Pole gibt, also einen Minus- und einen Pluspol. In einem Molekül sind das die Partialladungen, die sich an den Bindungspartnern einer polaren Atombindung ausbilden. Ein Molekül als Ganzes ist dann ein Dipol, wenn die Partialladungen im Molekül auch insgesamt betrachtet eine ungleichmäßige Ladungsverteilung ergeben.
Ein Dipol entsteht in einem Molekül, wenn die Bindungspartner unterschiedliche Elektronegativitäten aufweisen und damit die gemeinsam geteilten Bindungselektronen unterschiedlich stark an sich ziehen. Das führt zu polaren Bindungen im Molekül, die insgesamt betrachtet einen Dipol ergeben können, wenn sich die Dipolmomente der Bindungen nicht gegenseitig aufheben.
Ein Molekül ist dann ein Dipol, wenn es im Molekül mindestens eine polare Atombindung gibt. Gibt es mehrere solche Bindungen, dürfen sich die Dipolmomente der einzelnen Bindungen nicht gegenseitig aufheben, sonst ist das Molekül insgesamt gesehen kein Dipol. Dieser Fall tritt in der Regel dann ein, wenn sich zwei polare Atombindungen genau gegenüberliegen, aber entgegengesetzt gerichtet sind, beispielsweise die beiden $\ce{CO}$-Doppelbindungen im $\ce{CO2}$-Molekül.
Die Bezeichnung Dipol setzt sich aus zwei griechischen Silben zusammen: di bedeutet zwei und pólos bedeutet Achse. Ein Dipol ist also eine Anordnung von zwei Achsen, wobei mit Achsen in der Regel gegensätzliche Eigenschaften wie beispielsweise entgegengesetzte elektrische Ladungen gemeint sind.
Mit Dipol-Dipol-Wechselwirkungen sind im Wesentlichen anziehende und abstoßende Kräfte gemeint, die zwischen elektrischen Dipolen herrschen. Da Dipolmoleküle sowohl negative als auch positive Partialladungen aufweisen, können sich diese Ladungen auch zwischen verschiedenen Molekülen anziehen bzw. abstoßen, wenn jeweils entgegengesetzte bzw. gleichartige Ladungen der Moleküle nahe beieinander liegen.
Zwischen elektrischen Ladungen herrscht stets die Coulombkraft. Diese bewirkt, dass entgegengesetzte Ladungen sich anziehen und gleichartige Ladungen sich abstoßen. Die Coulombkraft, also die elektrostatische Anziehung oder Abstoßung, wird umso größer, je näher sich zwei Ladungen kommen. Wenn zwei Dipole bzw. zwei Dipolmoleküle sich nahe kommen, gibt es sowohl anziehende als auch abstoßende Kräfte zwischen den Dipolen, da jedes Dipolmolekül zwei entgegengesetzte Ladungen trägt. Das sind die Dipol-Dipol-Kräfte, die auch Dipol-Dipol-Wechselwirkungen genannt werden.
Ein Dipol wird manchmal auch permanenter Dipol genannt, um ihn vom temporären Dipol abzugrenzen. Ein permanenter Dipol ist in der Chemie ein Dipolmolekül, dessen asymmetrische Ladungsverteilung, die den Dipol ausmacht, solange besteht, wie das Molekül besteht – also zeitlich permanent (immerwährend, bleibend) ist. Eine in der Chemie wichtige Wechselwirkung zwischen starken permanenten Dipolen stellen die Wasserstoffbrückenbindungen dar.
Ein temporärer Dipol bildet sich, wenn in einem Molekül, das eigentlich kein Dipol ist, von außen ein Dipolmoment induziert wird. Das geschieht, wenn einzelne Elektronen des Moleküls von einer außerhalb des Moleküls vorhandenen elektrischen Ladung angezogen oder abgestoßen werden. So entsteht eine asymmetrische Ladungsverteilung im Molekül und damit ein Dipolmoment – allerdings nur für so lange, wie sich die induzierende Ladung in der Nähe des Moleküls befindet. Das induzierte Dipolmoment bleibt also nur zeitlich begrenzt bestehen – eben temporär. Eine in der Chemie wichtige Wechselwirkung zwischen induzierten Dipolen stellen die Van-der-Waals-Kräfte dar.
1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!
Jetzt registrieren und vollen Zugriff auf alle Funktionen erhalten!
30 Tage kostenlos testenDipole Übung
-
Gib an, was ein Dipol ist.
TippsEs gibt zwei richtige Antworten.
Dipolmoleküle bestehen nicht aus geladenen Ionen.
LösungGanz generell gesehen bedeutet „Dipol“, dass etwas zwei verschiedene Pole hat.
In der Chemie bezeichnen wir ein einzelnes Molekül als Dipol beziehungsweise Dipolmolekül, wenn es zwei Seiten mit unterschiedlicher elektrischer Ladung hat, also einen Pluspol und einen Minuspol.
Moleküle bestehen nicht aus geladenen Ionen. Demnach entstehen Dipole nicht aus Ionenverbindungen, sondern werden durch Atombindungen gebildet.
-
Kennzeichne die beteiligten Atome von Chlorwasserstoff $\ce{(HCl)}$.
TippsDem Wasserstoffatom werden zwei Eigenschaften zugeordnet.
Das elektronegativere Atom zieht die Bindungselektronen zu sich.
LösungEin typisches Beispiel eines Dipolmoleküls ist Chlorwasserstoff: Hier haben wir ein Wasserstoff- und ein Chloratom, die sich ein bindendes Elektronenpaar teilen.
Wenn die beiden Atome sich verbinden, geschieht Folgendes:- Chlor ($EN \ce{(Cl)} = 3,\!16$) ist deutlich elektronegativer als Wasserstoff ($EN \ce{(H)} = 2,\!2$). Das bedeutet, es zieht die beiden Bindungselektronen stärker zu sich.
- So wird der Schwerpunkt der negativen Ladungen in Richtung des Chloratoms verschoben. Man spricht hierbei von einer Verschiebung der Ladungsträgerdichte.
- Dadurch entsteht eine negative Partialladung auf der Seite des Chloratoms. Wasserstoff hingegen weist eine positive Partialladung auf.
-
Beschreibe die Bedingungen zur Ausbildung eines Dipols.
TippsBei mehr als einer polaren Bindung in einem Molekül ist die Molekülstruktur entscheidend.
Durch eine polare Atombindung entsteht ein Dipolmoment.
LösungNicht alle Moleküle mit einer polaren Atombindung sind automatisch Dipole, nur weil sie ein Dipolmoment haben. Denn hat ein Molekül mehrere polare Bindungen, ist die Anordnung der Dipolmomente im Raum entscheidend.
Nehmen wir an, wir haben in einem Molekül zwei polare Bindungen, die sich genau gegenüberliegen: Wenn wir die Vektorpfeile addieren, also das Ende des einen an die Spitze des anderen setzen, dann löschen sie sich genau aus. Die Länge der Pfeile spielt dabei keine Rolle.
Damit ein Molekül ein Dipol ist, müssen somit zwei Bedingungen erfüllt sein:
$\to$ Es muss mindestens eine polare Atombindung (und damit ein Dipolmoment) geben.
$\to$ Vorhandene Dipolmomente dürfen sich nicht aufgrund der Molekülstruktur gegenseitig aufheben. -
Vergleiche die Moleküle.
TippsDas ist die räumliche Anordnung von Wasser.
Ein Wasserstrahl lässt sich mit einem elektrostatisch aufgeladenen Plastikstab anziehen.
LösungDamit ein Molekül ein Dipol ist, müssen zwei Bedingungen erfüllt sein:
$\to$ Es muss mindestens eine polare Atombindung (und damit ein Dipolmoment) geben.
$\to$ Vorhandene Dipolmomente dürfen sich nicht aufgrund der Molekülstruktur gegenseitig aufheben.Die erste Bedingung trifft sowohl für Wasser als auch für Kohlenstoffdioxid zu. Jedoch unterscheiden sich die beiden Moleküle in ihrer Molekülstruktur. Anhand dieser kann herausgefunden werden, ob es sich bei dem jeweiligen Molekül um einen Dipol handelt:
$\underline{\text{Wasser} \ce{(H2O)}}$
- Anordnung im Raum: gewinkelt
- Ladungsträgerdichte: beim Sauerstoff
- Gesamtdipolmoment: $\boldsymbol{\neq 0}$
- Dipol: ja
$\underline{\text{Kohlenstoffdioxid} \ce{(CO2)}}$
- Anordnung im Raum: lang gestreckt
- Ladungsträgerdichte: in der Mitte
- Gesamtdipolmoment: $\boldsymbol{= 0}$
- Dipol: nein
-
Entscheide, welche Moleküle Dipole darstellen.
TippsEs gibt drei Dipolmoleküle.
LösungDamit ein Molekül ein Dipol ist, müssen zwei Bedingungen erfüllt sein:
$\to$ Es muss mindestens eine polare Atombindung (und damit ein Dipolmoment) geben.
$\to$ Vorhandene Dipolmomente dürfen sich nicht aufgrund der Molekülstruktur gegenseitig aufheben.$\underline{\text{Folgende Moleküle sind Dipole:}}$
- Fluorwasserstoff $\ce{(HF)}$
- Ammoniak $\ce{(NH3)}$
- Wasser $\ce{(H2O)}$
Kohlenstoffdioxid $\ce{(CO2)}$ ist kein Dipol, weil sich die Vektorpfeile durch die lang gestreckte Anordnung wieder löschen. Dadurch ist die Ladungsdichte in der Mitte des Moleküls.
-
Beschreibe einige Eigenschaften von Wasser.
TippsZwischen den Wassermolekülen bilden sich Anziehungskräfte aus.
Je stärker die Anziehungskraft, desto höher der Siedepunkt.
LösungDas Wassermolekül ist also als Ganzes gesehen polar – und damit ein Dipol. Denn:
- Es gibt zwei polare Bindungen. Sauerstoff ist elektronegativer als Wasserstoff.
- Das Molekül hat eine gewinkelte Struktur. Das liegt an den freien Elektronenpaaren, die zwar nicht an den Bindungen teilnehmen, aber trotzdem ihren Platz brauchen.
Das Ausbilden eines Dipols bestimmt einige Eigenschaften des Wassers:
- Durch unterschiedlich geladene Seiten entsteht ein Dipolmolekül.
- Dadurch bilden sich Anziehungskräfte. Man nennt sie Dipol-Dipol-Wechselwirkungen.
- Diese führen zu einem relativ hohen Siedepunkt.
- Außerdem können sich andere polare Stoffe gut in Wasser lösen.
8.800
sofaheld-Level
6.601
vorgefertigte
Vokabeln
7.846
Lernvideos
37.814
Übungen
33.941
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Chemie
- Periodensystem
- Ammoniak Verwendung
- Entropie
- Salzsäure Steckbrief
- Kupfer
- Stickstoff
- Glucose Und Fructose
- Salpetersäure
- Redoxreaktion
- Schwefelsäure
- Natronlauge
- Graphit
- Legierungen
- Dipol
- Molare Masse, Stoffmenge
- Sauerstoff
- Elektrolyse
- Bor
- Alkane
- Verbrennung Alkane
- Chlor
- Elektronegativität
- Tenside
- Toluol, Toluol Herstellung
- Wasserstoffbrückenbindung
- Fraktionierte Destillation Von Erdöl
- Carbonsäure
- Ester
- Harnstoff, Kohlensäure
- Reaktionsgleichung Aufstellen
- Redoxreaktion Übungen
- Cellulose Und Stärke Chemie
- Süßwasser Und Salzwasser
- Katalysator
- Ether
- Primärer Alkohol, Sekundärer Alkohol, Tertiärer Alkohol
- Van-der-Waals-Kräfte
- Oktettregel
- Kohlenstoffdioxid, Kohlenstoffmonoxid, Oxide
- Alfred Nobel Und Die Dynamit Entdeckung
- Wassermolekül
- Ionenbindung
- Phosphor
- Saccharose Und Maltose
- Aldehyde
- Kohlenwasserstoff
- Kovalente Bindungen
- Wasserhärte
- Peptidbindung
- Fermentation