Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Ketone – Reaktionen (Expertenwissen)

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Bewertung

Ø 4.5 / 4 Bewertungen
Die Autor*innen
Avatar
André Otto
Ketone – Reaktionen (Expertenwissen)
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Ketone – Reaktionen (Expertenwissen) Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Ketone – Reaktionen (Expertenwissen) kannst du es wiederholen und üben.
  • Benenne folgende Reaktionsprodukte aus Reaktionen mit Ketonen.

    Tipps

    Zucker sind in der Ringform Halbacetale.

    Lösung

    Alle Verbindungen sind Abkömmlinge von Ketonen, d.h. von Carbonylverbindung. Die Namen leiten sich häufig aus der Herstellungsmethode ab. Oxim z.B. leitet sich von Oxi- und Imin, d.h. einem oxidierten Imin, ab. Es entsteht bei der Reaktion von einem Keton mit Hydroxylamin. Reagiert das Keton mit einem anderen Ammoniakderivat, mit dem Hydrazin, dann entsteht ein Hydrazon.

    Die Acetalbildung begegnet dir auch in der Naturstoffchemie. Sie läuft ab, wenn ein offenkettiges Zuckermolekül zur Ringform wird. Dabei reagiert die Carbonylgruppe intramolekular mit einer Hydroxygruppe.

  • Nenne Möglichkeiten zur Reduktion eines Ketons zu einem Kohlenwasserstoff.

    Tipps

    Es gibt eine Reduktion mit Hydrazin, wobei zunächst das Hydrazin gebildet wird, aus dem dann Stickstoff abgespalten werden kann.

    Viele Reduktionen erfolgen mit Metallen oder nascierendem Wasserstoff.

    Lösung

    Die Desoxygenierung von Ketonen ist die Entfernung vom Carbonylsauerstoff, d.h. die Bildung von einem Alkan aus einem Keton. Prinzipiell gibt es drei häufig angewendete Methoden:

    1. Wolff-Kishner-Reaktion: Durch Umsetzung mit Hydrazin kommt es zur Bildung von einem Hydrazon, welches durch den Einfluss von einer Base (NaOH) Stickstoff abspaltet. Übrig bleibt das Alkan (siehe Abbildung).
    2. Clemmensen-Reaktion: Bei dieser Reaktion wird Zinkamalgam mit konzentrierter Salzsäure umgesetzt. Durch die Säure wird das Carbonyl-Sauerstoffatom protoniert. Dann wird unter einem Ein-Elektronentransfer diese Bindung gespalten, sodass ein Alkan gebildet wird.
    3. Entschwefelung von Thioketonen: Thioketone besitzen anstelle des Sauerstoffatoms an der gleichen Stelle ein Schwefelatom. Mithilfe von Quecksilbersalzen, die eine hohe Affinität zum Schwefel haben, gelingt die Entschwefelung, sodass auch nur noch ein Alkan übrig bleibt.
  • Erläutere den Mechanismus der Iminsynthese.

    Tipps

    Bei der Reaktion wird Wasser aus dem Carbonyl-Sauerstoffatom und aus 2 H-Atomen des Ammoniaks abgespalten.

    Ladungen müssen immer erhalten bleiben. Greift ein negativ geladenes Teilchen an, so muss im Produkt eine negative Ladung vorhanden sein.

    Lösung

    Wird ein Keton mit einem primären Amin oder Ammoniak umgesetzt, so kommt es zur Ausbildung von einem Imin. Bei Umsetzung mit einem sekundären Amin bildet sich ein Enamin und mit einem tertiären Amin findet keine richtige Reaktion, sondern nur eine Adduktbildung statt.

    Die Umsetzung von Carbonylverbindungen mit Nucleophilen (Aminen, Alkoholaten, Carbanionen, ...) erfolgt sehr häufig unter Protonenkatalyse. Durch diese wird das Carbonyl-Kohlenstoffzentrum aktiviert, da es statt einer positiven Partialladung so eine reelle positive Ladung erhält. Damit wird das Zentrum noch elektrophiler.

  • Bestimme die Reaktionsprodukte folgender Umsetzungen mit Aceton.

    Tipps

    Diese Verbindung ist eine Grignard-Verbindung. Das Kohlenstoffatom neben dem Magnesium ist partiell negativ geladen, da das Magnesium partiell positiv geladen ist.

    Nucleophile greifen meist am elektrophilen Carbonyl-Kohlenstoffzentrum an.

    Lösung

    Das wichtigste Prinzip bei Reaktionen von Ketonen ist, zu wissen, welche Position nucleophil und elektrophil ist. Das Carbonyl-Kohlenstoffzentrum hat aufgrund des hoch elektronegativen Partners Sauerstoff nur eine geringe Elektronendichte. Wenn zusätzlich an den Resten noch elektronenziehende Gruppen, wie Halogene oder Aminogruppen, eingebaut sind, führt das zu einem C-Atom mit großer, positiver Partialladung. Da Sauerstoff sehr elektronegativ ist, zieht er die Elektronendichte zu sich und erhält eine negative Teilladung. Dieser Effekt kann über die mesomere Grenzformel gezeigt werden, in der Sauerstoff real negativ und das Kohlenstoffzentrum positiv geladen ist (siehe Abbildung, mittig).

    An das elektrophile Kohlenstoffzentrum kann nun jedes denkbare Nucleophil angreifen, z.B. Hydroxid-Ionen, Wasser (Hydrat), Amine (Imin, Enamin), Carbanionen (Grignard) oder Hydride ($LiAlH_4$).

  • Finde das Reaktionsprodukt folgender Reaktion.

    Tipps

    Wenn Aceton vorgelegt wird, liegt dieses in der deprotonierten Form vor.

    deprotoniertes Aceton

    Lösung

    Es ist wichtig zu wissen, welches Edukt im basischen oder sauren Milieu vorgelegt wird. Im Basischen erfolgt eine Deprotonierung von einem Alkylrest (Methylgruppe) neben dem Carbonylkohlenstoffatom, dadurch bildet sich ein Nucleophil. Im Sauren erfolgt eine Protonierung des Carbonyl-Sauerstoffatoms, wodurch das Kohlenstoffzentrum positivierter (elektrophiler) wird.

    Wenn Aceton im Basischen vorgelegt wird, liegt es deprotoniert vor. Als Nucleophil kann es nun an das Carbonyl-Kohlenstoffatom des Acetaldehyds angreifen. Es kommt zur Ausbildung von dem Aldol.

  • Zeige den Ablauf der Stetter-Synthese.

    Tipps

    Das $\alpha$,$\beta$-ungesättigte Keton ist ein Michael-Akzeptor, d.h., sein positives Zentrum liegt an der endständigen Doppelbindung.

    Lösung

    Die Stetter-Synthese ist eine Möglichkeit, um 1,4-Diketone zu synthetisieren. Sie stellt eine Mischung aus Cyanhydrin- und Aldolreaktion dar.

    Aus dem Aldehyd wird mit NaCN ein Cyanhydrin-Anion gebildet. Der negativ geladene Sauerstoff kann sich ein Proton vom selben Kohlenstoffzentrum stehlen, wobei ein Carbanion entsteht (Protonentransfer). Dieses Carbanion kann nun an den Michael-Akzeptor, d.h. an das $\alpha$,$\beta$-ungesättigte Keton, angreifen, wobei sich die negative Ladung auf das Sauerstoffatom vom Michael-Akzeptor verschiebt. Durch wiederholten Protonentransfer wird dieses Sauerstoffatom abgesättigt und die negative Ladung entsteht am ehemaligen Aldehyd-Sauerstoffatom. Damit die Ladung ausgeglichen wird, klappt der Sauerstoff sein freies Elektronenpaar zum Kohlenstoff zurück und das schwach gebundene Cyanid-Ion verlässt das Molekül. Das so erzeugte 1,4-Diketon wird in der Synthesechemie als Ausgangsstoff für die Knorrsche Pyrrolsynthese eingesetzt.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

7.316

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.912

Lernvideos

37.087

Übungen

34.304

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden