sofatutor 30 Tage
kostenlos ausprobieren

Videos & Übungen für alle Fächer & Klassenstufen

I-Effekt und M-Effekt 14:02 min

Textversion des Videos

Transkript I-Effekt und M-Effekt

Guten Tag und herzlich willkommen Dieses Video heißt I-Effekt und M-Effekt An Vorkenntnissen solltet Ihr die organische Chemie bis Veresterung und Verseifung gut beherrschen. Im Video möchte ich Euch die Möglichkeiten und Grenzen der Benutzung des Konzepts beider Effekte aufzeigen

Der Film besteht aus 9 Abschnitten: 1. Wozu Effekte? 2. Effekthascherei 3. Der I-Effekt 4. Beispiele für den I-Effekt 5. Der M-Effekt 6. Beispiele für den M-Effekt 7. Zusammenhang zwischen beiden Effekten 8. Grenzen des Konzepts und 9. Zusammenfassung

  1. Wozu Effekte? Obwohl es manchmal nicht so scheint, lebt die Chemie, besonders die organische von der Beobachtung. Und jedes Mal stellt man sich die frage, wie lässt sich die Beobachtung erklären? Und wie es sich zu einer ordentlichen Wissenschaft gehört möchte man für jede chemischen Reaktion eine Erklärung bekommen. Um die Erklärung zu verstehen, sollte diese einfach, klar und verständlich sein. In der theoretischen Chemie gibt es ein Verfahren, das ich als Mercedes Benz der theoretischen Chemie bezeichnen möchte. Das ist die Schrödinger-Gleichung und ihre Anwendung. Eine hervorragende Gleichung die für sämtliche chemischen Prozesse prinzipiell eine Erklärung liefern kann und diese sogar quantitativ.  Um jedoch qualitativ gute Ergebnisse  zu erzielen, benötigt man sehr viel Zeit, Geld und leistungsfähige Computer. Das ist natürlich alles andere als ersprießlich. Man benötigt für die schnelle Voraussage einfachere Methoden. Daher geht man von der quantitativen  Beurteilung zur qualitativen über. Je mehr qualitative Aussage eine Beurteilung liefert um so anschaulicher wird sie. Das ist schön. Allerdings ist der Grad der Exaktheit bei rein qualitativen Aussagen nicht sehr hoch. Das ist nun weniger schön. Mit den Effekten versuchen wir einen günstigen Kompromiss zu finden. Wir benötigen sie für die schnelle und zuverlässigen Orientierung. Die Verallgemeinerung des qualitativen Zusammenhangs zwischen der Struktur und den physikalischen wie chemischen Eigenschaften von Stoffen nennt man Effekt. Wir wollen zwei wichtige Effekte besprechen, den I-Effekt und den M-Effekt. Diese Effekte stehen im Zusammenhang und werden stets ausgelöst durch funktionelle Gruppen. Beispiele sind die Nitrogruppe, die Aminogruppe, die Carboxygruppe und die Methylgruppe.

  2. Effekthascherei Effekte sind gut und nützlich ich möchte aber vor zu hohen Erwartungen warnen. Es gibt starke Effekt, auch schwache Effekte spielen in der Chemie eine Rolle. Häufig kommt es zu Überlagerungen von Effekten. Und schließlich gibt es Effekte an deren Existenz gezweifelt wird. Effekte sind ein Konzept, das aus dem Experiment gewonnen wird. Das ist die primäre Richtung. Natürlich kann man mit Kenntnis der Effekte wieder auf das Experiment einwirken. In der Chemie, speziell der organischen gibt es eine ganze reihe von Effekten. Zunächst haben wir die polaren Effekte, das heißt die elektronischen. Andere Effekte könnten zum Beispiel sterische sein. Die polaren Effekte werden unterteilt in den induktiven Effekt und  den mesomeren Effekt. Beide sind die wichtigesten Effekte der organischen Chemie.

  3. Der I-Effekt. Der I-Effekt wird ausgelöst durch die Wirkung funktioneller Gruppen. Eine Möglichkeit ist, dass diese Gruppen Elektronen anziehen, der entgegengesetzte Fall ist die Bereitstellung von Elektronen. Elektronen anziehend sind das Fluratom, die Carboxygruppe, die Nitrogruppe, die Cyanogruppe, die Acetylgruppe und die Aldehydgruppe. Anziehung von Elektronen wird als -I-Effekt bezeichnet. Bereitstellung von Elektronen erfolgt durch Alcylgruppen, die Metyhlgruppe, die Ethylgruppe, die Isopropylgruppe und die Tertiärpropylgruppe. Dieser Effekt wird als +I-Effekt bezeichnet. Eine gewisse Analogie zur Elektronegativität ist zu erkennen. Interessant ist die Wirkung des I-Effekts entlang von Alkylketten. Nehmen wir eine Alkansäure und betrachten den -I-Effekt. Es kommt zu einer schnellen Dämpfung in gesättigte Verbindungen.

  4. Beispiele für den I-Effekt Mit der freien Standarddeprotonierungsenergie kann man gut den I-Effekt erkennen. Betrachten wir die Deprotonierung von Methan. Die benötigte Energie beträgt 1710 kJ/mol. Tauschen wir das Wasserstoffatom H gegen die elektronenziehende Cyanogruppe CN so erhalten wir einen Wert von 1530 kJ/mol. Noch stärker zieht die Nitrogruppe. Wir erhalten 1470 kJ/mol. Die Protonen werden leichter abgegeben, das wird bedingt durch den -I-Effekt. Die elektronenziehende Wirkung erleichtert die Abspaltung des Protons.

  5. Veränderung der Acidität Wir wollen nun Essigsäure und einige substituierende Essigsäuren betrachten. Essigsäure hat einen pKs Wert von 4,75, Propionsäure hingegen von 4,87. Durch die Methylgruppe CH3 werden die Elektronen in das System hineingeschoben. Bromessigsäure hingegen hat einen pKs Wert von 2,69. Das Bromatom zieht Elektronen aus dem System ab. Die Acidität steigt. Der erste Substituent liefert einen +I-Effekt der zweite einen -I-Effekt. +I vermindert die Acidität ,-I erhöht sie. Als letztes ein Beispiel zu Dämpfung entlang der Kohlenstoffkette. Wir schauen uns die einfach, zweifach und dreifach chlorsubstituierte Essigsäuremoleküle an. Schauen wir uns die Acidität von Chloressigsäure an, pKs=2,85. Wird das Chloratom durch eine Methylengruppe CH2 von der Carboxygruppe entfernt, so vergrößert sich der pKs Wert auf 3,98. Eine weitere Methylengruppe verringert die Acidität noch mehr, pKs=4,52. Wir haben uns der Acidität der Essigsäure schon stark angenähert. Das heißt, es kommt von oben nach unten zur Dämpfung. Der Effekt nimmt entlang der Kette schnell ab.

  6. Der M-Effekt Im Unterschied zum I-Effekt kommt seine Wirkung nur in konjugierten Systemen zum Tragen. Eine Aminogruppe NH2 speist ihr Elektronenpaar in das konjugierte System ein. Das letzte Kohlenstoffatom erhält eine negative Ladung. Am Stickstoffatom bildet sich eine positive Ladung heraus. Man erhält mesomere Grenzstrukturen. Im Unterschied zum I-Effekt zeigt der M-Effekt keine Dämpfung. Die Aminogruppe speist Elektronen in das System ein.  Wir sprechen hier vom +M-Effekt. Betrachten wir nun die Wirkung einer Nitrogruppe auf ein konjugiertes System. Hier wird ein Elektronenpaar in Richtung Nitrogruppe abgezogen. Es entstehen mesomere Grenzstrukturen. Auch hier erfolgt keine Dämpfung entlang des konjugierten Systems. Durch die Nitrogruppe verliert das System Elektronen, man sprich hier vom -M-Effekt

  7. Beispiele für den M-Effekt Der M-Effekt kann zur Verminderung der Polarität einer Verbindung führen. Im Chlorbenzolmolekül trifft man den M-Effekt an, es entstehen Grenzstrukturen. Durch die die negative Ladung am Chloratom über das gesamte System verteilt wird. Chlorbenzol wird dadurch unpolar. Nur 0,5g lösen sich in einem Liter Wasser. Im Monochlormethanmolekül beobachtet man den +I Effekt nicht. Das Molekül ist polarer. 5g lösen sich in einem Liter Wasser. Die Löslichkeit von Chlorbenzol in Wasser wird vermindert. Da unpolares im polaren schlecht löslich ist. Der M-Effekt beeinflusst stark die Farbigkeit chemischer Verbindungen. Eindrucksvolle Beispiele dafür sind 4 Nitroanilin und Methylorange.

  8. Zusammenhang zwischen beiden Effekten Wir haben gelernt das man die polaren Effekte in induktiven und mesomeren unterteilen kann. Es gibt aber keine absolute Methode um sie in der Verbindung exakt voneinander zu trennen. Trotzdem geht man davon aus, dass man den polaren Effekt als Summe beider Effekte ansehen kann. Dafür spricht eine jahrelange Erfahrung. Außerdem ist die Wirkung des mesomeren Effektes in der Regel größer als die des Induktiven. Die Abschätzung des Gesamteffektes ist einfach, wenn beide Teileffekte das gleiche Vorzeichen haben, so wie bei der Nitrogruppe. Sind die Vorzeichen entgegengerichtet, so hat der somarische Effekt das Vorzeichen des mesomeren Effektes so wie bei der Hydroxygruppe.

  9. Grenzen des Konzepts Als Erstes sind beide Effekte bei radikalischen Reaktionen nicht anwendbar. Bei Molekülen mit wenig funktionellen Gruppen bedarf es anderer Herangehensweisen. I und M-Effekt sind in der Regel nicht quantifizierbar. Ausnahmen sind die Gleichungen von Hammet und Taft.

  10. Zusammenfassung. Polare Effekte sind unterteilbar in I und M-Effekt. Der I-Effekt wirkt sowohl über Alcylreste als auch über Ketten konjugierter Verbindungen. Der M-Effekt wirkt nur in konjugierten Systemen. Der I-Effekt erfährt entlang der Kette eine Dämpfung, der M-Effekt entlang des konjugierten Systems nicht. +I-Effekt zeigen Alkyreste. -I-Effekt weisen die Nitrogruppe, die Cyanogruppe und die Carboxygruppe auf. +M-Effekt zeigen die Hydroxygruppe, die Aminogruppe und die Dimethylaminogruppe. -M-Effekt weisen die Nitrogruppe, die Cyanogruppe und die Carboxygruppe auf.

Und leider wieder Schluss. Ich wünsche Euch alles Gute und viel Erfolg.

2 Kommentare
  1. Dazu gibt es Videos. Mesomerie, Konjugation, Farbstoffe u. ä.

    Von André Otto, vor mehr als 5 Jahren
  2. Schade, dass nichts zum Einfluss des M-Effekts auf die Farbigkeit gesagt wurde. Hätte mir weitergeholfen.

    Von Merabell A., vor mehr als 5 Jahren

I-Effekt und M-Effekt Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video I-Effekt und M-Effekt kannst du es wiederholen und üben.

  • Erkläre die Effekte in der organischen Chemie.

    Tipps

    Polar bedeutet, dass die Elektronen zu einem Bindungspartner verschoben sind.

    Lösung

    Die Zusammenhänge zwischen Struktur und Eigenschaften chemischer Verbindungen lassen sich durch Effekte verallgemeinern. Es gibt eine ganze Reihe von Effekte, die man betrachten kann. Polare Effekte sind Effekte, die durch Elektronenverteilung im Molekül verursacht werden. Dazu gehören der induktive und der mesomere Effekt. Diese Effekte werden durch funktionelle Gruppen ausgelöst.

  • Bestimme, ob folgende funktionelle Gruppen einen +I- oder -I-Effekt auslösen.

    Tipps

    Ein negativer induktiver Effekt bedeutet, dass die Gruppe die Elektronen aus dem System zieht.

    Lösung

    Funktionelle Gruppen können einmal Elektronen aus einem System anziehen und einmal hineinschieben. Wenn die Elektronen von der funktionellen Gruppe angezogen werden, spricht man vom -I-Effekt. Es wird also ein negativer induktiver Effekt ausgeübt. Folgende funktionelle Gruppen üben einen -I-Effekt aus:

    • Halogene
    • Carbonyl- und Carboxylgruppen
    • Nitrogruppe
    • Cyanogruppe
    Stellen Gruppen Elektronen bereit, üben sie einen positiven induktiven Effekt aus. Dazu gehören Alkylreste und verzweigte Alkylreste.

  • Ermittle die Verbindungen, auf die ein mesomerer Effekt wirkt.

    Tipps

    Der mesomere Effekt tritt auf, wenn es mesomere Grenzstrukturen gibt.

    Der mesomere Effekt tritt nur in konjugierten Systemen auf.

    Lösung

    Um die Polarität und damit die Elektronenverteilung in einem Molekül zu beeinflussen, werden funktionelle Gruppen benötigt. Der mesomere Effekt tritt außerdem nur bei konjugierten Systemen auf. Diese Systeme weisen zwei oder mehr Doppelbindungen auf, die jeweils durch eine Einfachbindung voneinander getrennt sind. Dadurch weist das Molekül verschiedene mesomere Grenzstrukturen auf. Die Doppelbindungen können sich im Molekül verschieben, wodurch sich Ladungen herausbilden und das Molekül polar wird.

    Die Aminogruppe $-NH_2$ übt dabei einen positiven mesomeren Effekt aus, weil sie die Elektronen des freien Elektronenpaares am Stickstoff in das Molekül schiebt.

  • Erkläre den polaren Effekt im Benzaldehyd.

    Tipps

    Zeichne dir mögliche Grenzstrukturen auf und überlege, was mit der Elektronenverteilung im Ring passiert.

    Lösung

    Die Carbonylgruppe am Ring übt einen negativen mesomeren Effekt aus. Da der Ring ein konjugiertes System ist, bilden sich verschiedene mesomere Grenzstrukturen (Abb. rechts). Die Carbonylgruppe zieht dabei die Elektronen aus dem Ring. Man spricht auch von einer Desaktivierung des Ringes. Durch die Verringerung der Elektronendichte im Ring wird ein elektrophiler Angriff am Ring unwahrscheinlicher.

  • Benenne folgende funktionelle Gruppen.

    Tipps

    Manchmal lassen sich die Namen von ähnlichen, anderen Verbindungen ableiten:

    • ${NO_3}^-$ Nitrationen
    • $CN^-$ Cyanidionen

    Lösung

    Um die organische Chemie gut verstehen zu können, ist es wichtig, sich gut in der Nomenklatur auszukennen und die Namen der funktionellen Gruppen zu beherrschen. Dabei lässt sich der Name einer organischen Gruppe auch von anionischen Salzen ableiten:

    • ${NO_3}^-$ Nitrationen
    • $CN^-$ Cyanidionen
    • $OH^-$ Hydroxidionen
    • ${NH_4}^+$ Ammoniumionen

  • Bestimme die Säurestärke der Carbonsäurederivate.

    Tipps

    Die Säurestärke ist ein Maß für die Fähigkeit, in Lösung zu dissoziieren.

    $ R-COOH \rightleftharpoons R-COO^- + H^+$

    Je polarer die Bindung, desto leichter lässt sich die Säure deprotonieren.

    Lösung

    Essigsäure ist eine organische Säure, die in wässriger Lösung nicht vollständig dissoziiert. Die Fähigkeit deprotoniert zu werden, was ein Maß für die Säurestärke ist, kann durch eine funktionelle Gruppe beeinflusst werden.

    Die Halogene üben einen negativen induktiven Effekt -I Effekt aus und ziehen somit Elektronen aus dem System. Das Proton kann dann leichter abgegeben werden. Ein substituiertes Chloratom erhöht also die Säurestärke. Befindet sich allerdings noch eine Methylgruppe zusätzlich zwischen Carboxylgruppe und Chlormethylgruppe, wird der Effekt über die zusätzliche Einfachbindung geschwächt, was wiederum einen mindernden Effekt auf die Säurestärke hat.

    Noch stärker wird die Säure, wenn nicht nur ein Chloratom, sondern gleich mehrere substituiert sind. Eine weitere Steigerung der Säurestärke erhalten wir, wenn anstatt Chlor Fluoratme substituiert sind. Durch ihre größere Elektronegativität üben sie einen stärkeren induktiven Effekt aus.