Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Zusammenhänge zwischen Eigenschaften und Molekülstruktur bei organischen Verbindungen

In dem Video wird erklärt, wie die Struktur von organischen Verbindungen ihre Eigenschaften wie Löslichkeit und Siedepunkt beeinflusst. Anhand von Beispielen wie Alkanen, Alkoholen, Carbonsäuren und Estern wird gezeigt, wie diese Zusammenhänge funktionieren. Interessiert? Dann lies weiter, um mehr darüber zu erfahren!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.8 / 12 Bewertungen
Die Autor*innen
Avatar
André Otto
Zusammenhänge zwischen Eigenschaften und Molekülstruktur bei organischen Verbindungen
lernst du in der 10. Klasse - 11. Klasse

Zusammenhänge zwischen Eigenschaften und Molekülstruktur bei organischen Verbindungen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Zusammenhänge zwischen Eigenschaften und Molekülstruktur bei organischen Verbindungen kannst du es wiederholen und üben.
  • Erkenne die Art der Kräfte zwischen den Teilchen.

    Tipps

    Wasserstoff-Brücken können nur zwischen Molekülen entstehen, in denen mindestens ein Wasserstoff-Atom an einem stark elektronegativen gebunden ist.

    Dipol-Dipol-Wechselwirkungen entstehen zwischen Molekülen, die elektronegative Elemente enthalten, wenn keine Wasserstoff-Brückenbindungen möglich sind.

    Als Van-der-Waals-Kräfte bezeichnet man die einzelne Wechselwirkung zwischen den Molekülen der Kohlenwasserstoffe.

    Lösung

    Wasserstoffbrücken-Bindung

    Alkansäuren enthalten die Carboxy-Gruppe $-COOH$ im Molekül. Das Wasserstoff-Atom ist mit einem elektronegativen Sauerstoff-Atom verbunden. Dadurch ist die Bildung von Wasserstoffbrücken möglich.

    Alkohole enthalten die Hydroxy-Gruppe $-OH$ im Molekül. Das Wasserstoff-Atom ist mit einem elektronegativen Sauerstoff-Atom verbunden. Dadurch ist die Bildung von Wasserstoffbrücken möglich.

    Amine enthalten die Amino-Gruppe $-NH_2$. Das Wasserstoff-Atom ist mit einem elektronegativen Stickstoff-Atom verbunden. Dadurch ist die Bildung von Wasserstoffbrücken möglich.

    Die Wasser-Moleküle bilden ähnliche Wasserstoffbrücken wie die Alkohole.

    Dipol-Dipol-Anziehung

    Ester besitzen Sauerstoff-Atome. Es sitzt jedoch kein Wasserstoff-Atom an einen Sauerstoff-Atom.

    Für die Ether gilt die gleiche Argumentation wie bei den Estern.

    Die Aldehyd-Moleküle sind durch die funktionelle Gruppe $-CHO$ polar. Es gibt aber kein Wasserstoff-Atom an einem Sauerstoff-Atom.

    Van-der-Waals-Kräfte

    Alkane sind die einfachsten Kohlenwasserstoffe. Ihre Moleküle sind unpolar. Daher kann die Wechselwirkung zwischen den Teilchen nur über Van-der-Waals-Kräfte realisiert werden.

    Für Benzol gilt die gleichee Argumentation wie bei den Alkanen.

  • Bestimme die Siedetemperatur der Alkane.

    Tipps

    Die Molekülgröße beeinflusst die Siedetemperatur am Stärksten.

    Die Verzweigung des Moleküls hat eine direkte Auswirkung auf die Siedetemperatur. Je verzweigter sie sind, desto stärker nimmt die Siedetemperatur ab.

    Lösung

    Je größer die Anzahl der Kohlenstoff-Atome, um so höher ist die Siedetemperatur.

    Bei isomeren Alkanen nimmt die Siedetemperatur mit abnehmenden Verzweigungsgrad ab.

    Glücklicherweise überschneiden sich die Siedetemperaturen mit benachbarter Anzahl von Kohlenstoff-Atomen nicht.

    Es ergibt sich die folgende Reihenfolge der Siedetemperaturen (zeilenweise, jeweils von links nach rechts):

    Propan ($C_3$) < Isobutan ($C_4$, verzweigt) < n-Butan ($C_4$, unverzweigt) < Neopentan ($C_5$, doppelt verzweigt) < Isopentan ($C_5$, einfach verzweigt) < n-Pentan ($C_5$, unverzweigt)

  • Erkläre den Unterschied der physikalischen Eigenschaften von Benzol und einigen Alkanen.

    Tipps

    Sowohl bei der Siedetemperatur als auch bei der Löslichkeit spielen die zwischenmolekularen Kräfte eine wichtige Rolle.

    Die Art der Elektronen eines Moleküls beeinflusst die Stärke zwischenmolekularer Kräfte.

    Lösung

    1. Siedetemperaturen n-Pentan ($C_5H_{12}$) siedet bei 36°C, n-Hexan bei 69°C. Die Ursachen sind die zunehmende Molekülgröße und die höheren Van-der-Waals-Kräfte zwischen den Teilchen. Benzol ($C_6H_6$) liegt nach der Molekülmasse zwischen den beiden Alkanen, besitzt jedoch die höchste Siedetemperatur (80°C).

    2. Löslichkeit Benzol wird bei Kontakt mit Wasser trüb, n-Pentan und n-Hexan hingegen bleiben klar.

    1,77 g Benzol sind in einem Liter Wasser löslich, n-Pentan löst sich mit 40 mg/l erheblich schlechter, ebenso n-Hexan (50 mg/l).

    Erklärung Da Benzol-Molekül besitzt eine viel höhere Polarisierbarkeit als die Moleküle der Alkane. Es verfügt über sechs $\pi$**-Elektronen**. Diese sind gut delokalisierbar. Es entstehen stärkere temporäre Dipole als bei den Alkan-Molekülen. Dadurch sind die Van-der-Waals-Kräfte zwischen den Molekülen größer. Das führt zu einer Erhöhung der Siedetemperatur.

    Ebenso lässt sich die gewisse Löslichkeit in Wasser erklären. Die polaren Wasserteilchen induzieren leichter Dipole als in den Alkan-Molekülen. Es steigt die Anziehung zwischen den Teilchen des Lösungsmittels und des gelösten Stoffes.

  • Finde die Löslichkeiten in Wasser.

    Tipps

    Funktionelle Gruppen erhöhen die Löslichkeit.

    Die Amino-Gruppe ist besser zur Ausbildung von Wasserstoffbrücken befähigt als die Hydroxy-Gruppe.

    Nicht gespannte Ringe in Kombination mit elektronenspendenden Gruppen weisen eine extrem hohe Affinität zu Wasser auf.

    Lösung

    Die Lösung wird zeilenweise von links nach rechts angegeben:

    • Ethansäurebutylester: 10 g/l
    Eine gewisse Löslichkeit ist vorhanden. Der Butyl-Rest verhindert eine bessere Vermischung.
    • 1,6-Diaminohexan: 800 g/l
    Die Amino-Gruppe bildet stärkere Wasserstoff-Brücken mit den Wasser-Teilchen als die Hydroxy-Gruppe aus. Der Grund dafür ist die geringere Elektronegativität des Stickstoffs im Vergleich zum Sauerstoff. Zudem sind zwei funktionelle Gruppen im Molekül enthalten. Zum Vergleich: Propylamin ist mit Wasser in jedem Verhältnis mischbar.
    • Sorbit: < 2000 g/l
    Die sechs Hydroxy-Gruppen führen zur hohen Löslichkeit. Da die Verbindung selbst fest ist, verdickt die Lösung bei weiterer Stoffzugabe, so dass die unbegrenzte Aufnahme von Sorbit verhindert wird.
    • n-Hexan: 50 mg/l
    Die Verbindung ist wie alle Alkane praktisch wasserunlöslich.
    • Hexansäure: 6 g/l
    Die Carboxy-Gruppe ist hydrophil. Gegen den hydrophoben Hexyl-Rest kann sie aber wenig ausrichten. Die Löslichkeit im Vergleich zum Ethansäurebutylester ist etwas geringer. Die Ester-Gruppe ist zwar weniger hydrophil, die Alkyl-Gruppen im Ester-Molekül sind jedoch kürzer.
    • 1,4-Dioxan: $\infty$
    Der zweifache cyclische Ether besitzt im Unterschied zu zwei Dimethylether-Molekülen vier Wasserstoff-Atome weniger. Der unpolare Anteil des Moleküls wird vermindert. Dadurch kommt die unbegrenzte Mischbarkeit mit Wasser zustande. Dimethylether hingegen besitzt eine Löslichkeit von 70 g/l.
  • Nenne triftige Argumente für das Vereisen eines Vergasers.

    Tipps

    Die Verteilung der Elektronen in den Teilchen verschiedener Verbindungen entscheidet über die Intensität ihrer Wechselwirkung.

    Ähnliche Teilchen ziehen sich besonders gut an.

    Mischbarkeit und Schmelztemperaturen sind wichtige Ursachen für die Vereisung eines Vergasers.

    Lösung

    Die höhere Dichte des Wassers im Vergleich zum Benzin ist kein Argument für das Vereisen. Chloroform hat mit 1,48 g·$cm^{−3 }$ eine klar größere Dichte als Wasser. Seine Erstarrungstemperatur ist aber mit -63°C erheblich niedriger.

    Die Polarität der Wasser-Moleküle im Gegensatz zu den Alkan-Molekülen ist ein Argument für das Vereisen des Vergasers. Polare und nicht polare Teilchen treten in keine nennenswerte Wechselwirkung. Wasser und Benzin mischen sich nicht mit den entsprechenden Folgen für den Vergaser.

    Gleiches löst sich in Gleichem ist ebenfalls ein Argument für das Vereisen. Der Grund dafür wurde in der obigen Aussage beschrieben..

    Die Brennbarkeit der Alkane im Unterschied zum Wasser ist kein Argument für das Vereisen. Tetrachlormethan $CCl_4$ ist wie Wasser nicht brennbar. Mit Benzin (allgemein mit Alkanen) ist es in jedem Verhältnis mischbar.

    Anmerkung: Tetrachlormethan ist als Enteisungsmittel natürlich ungeeignet. Besser sind Alkohole.

    Die Hauptursache für das Vereisen des Vergasers ist der Umstand, dass Wasser und Alkane praktisch nicht miteinander mischbar sind.

    Die höhere Wärmekapazität des Wassers gegenüber den Alkanen ist kein Argument für das Vereisen. Es ist eher ein Argument dagegen, da dadurch die Abkühlung langsamer einsetzt.

    Die höhere Siedetemperatur von Wasser im Vergleich zu dem Alkan mit vergleichbarer Molekülmasse ist nicht maßgebend für den Prozess der Vereisung.

    Die relativ hohe Schmelztemperatur von Wasser im Vergleich zu den Alkanen macht das Vereisen des Vergasers im Winter erst möglich.

  • Ermittle die Gemische, die unbegrenzt mischbar sind.

    Tipps

    „Gleiches löst sich in Gleichem“ ist das grundlegende Prinzip bei der Beurteilung der Mischbarkeit.

    Polare Verbindungen sind vorzugsweise miteinander mischbar. Das gleiche gilt für unpolare Verbindungen.

    Sind Wasserstoffbrücken-Bindungen möglich und die Alkyl-Reste klein, kann man von einer unbegrenzten Mischbarkeit ausgehen.

    Lösung
    • Hexan + Octan: unbegrenzt mischbar
    Beide Verbindungen gehören zu den Alkanen. Die Moleküle sind jeweils unpolar. Daraus resultiert die unbegrenzte Mischbarkeit.
    • Heptan + Essigsäure: nicht unbegrenzt mischbar
    Das Heptan-Molekül ist hydrophob, das Essigsäure-Molekül hingegen ist hydrophil. Die Verbindungen sind daher nicht miteinander mischbar.
    • Heptan + Propan-1-ol: unbegrenzt mischbar
    Der Alkohol besitzt eine ausreichend lange Alkyl-Kette (Prop-2-yl = Isopropyl), um die unbegrenzte Mischbarkeit mit Heptan zu ermöglichen.
    • Methanol + Ethanol: unbegrenzt mischbar
    Es handelt sich um zwei benachbarte Vertreter einer homologen Reihe. Die Moleküle sind polar, es bilden sich zwischen ihnen Wasserstoffbrücken-Bindungen. Dadurch sind die Verbindungen unbegrenzt miteinander mischbar.
    • Methanol + Hexan: nicht unbegrenzt mischbar
    Die Methanol-Moleküle sind sehr polar, die Hexan-Moleküle dagegen sind unpolar. Die unbegrenzte Mischbarkeit ist nicht möglich.
    • Propylamin + Wasser: unbegrenzt mischbar
    Die Moleküle beider Verbindungen sind sehr polar. Außerdem können sie untereinander Wasserstoffbrücken-Bindungen ausbilden. Daher sind beide Verbindungen unbegrenzt miteinander mischbar.
    • Dichlormethan + Hexan: unbegrenzt mischbar
    Die Moleküle des Dichlormethans sind polar. Allerdings nicht so stark, dass die unbegrenzte Mischbarkeit mit Hexan verhindert würde.
    • Ethylacetat + Trichlormethan: unbegrenzt mischbar
    Die Moleküle beider Verbindungen weisen Dipol-Charakter auf. Wasserstoffbrücken-Bindungen zwischen ihnen können nicht ausgebildet werden. Nach dem Prinzip „Gleiches löst sich in Gleichem“ sind sie unbegrenzt miteinander mischbar.
    • Methylformiat + Wasser: nicht unbegrenzt mischbar
    Zugegebenermaßen weist dieses Paar eine kleine Gemeinheit auf. Der Ester ist sehr polar. Wasserstoffbrücken-Bindungen zwischen den Molekülen beider Verbindungen können nicht entstehen. Methylformiat ist in Wasser gut löslich. Beide Verbindungen sind aber nicht unbegrenzt miteinander mischbar.
    • Diethylether + Pentan: unbegrenzt mischbar
    Die moderate Polarität des Ethers macht ihn „alkanähnlich“. Zwischen den Molekülen beider Verbindungen wirken Van-der-Waals-Kräfte. Daher sind die Flüssigkeiten unbegrenzt miteinander mischbar.