30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Zustandsgleichung idealer Gase 05:57 min

Textversion des Videos

Transkript Zustandsgleichung idealer Gase

Hallo. In diesem Video soll es um die Zustandsgleichung idealer Gase gehen. Dieser Ring hier stellt ein Gas, zum Beispiel Luft, in einem abgeschlossenen Raum dar. Ihr kennt bereits zwei Gesetze, die dann gelten. Das Erste hat etwas mit der Temperatur des Gases zu tun. Es lautet nämlich: Das Volumen (V) geteilt durch die Temperatur (T) ist immer konstant. Diese Gleichung kennt ihr schon unter dem Namen Gesetz von Gay-Lussac. Das Gesetz gilt, wenn der Druck im Gas konstant ist. Dann besagt es, dass, wenn die Temperatur im Gas größer wird, sich auch das Volumen vergrößert. Den Druck stelle ich nun mal mit einem kleinen Gewicht auf dem Gas dar. Dazu kennt ihr ein zweites Gesetz. Es lautet: Volumen (V) mal Druck (p) ist ebenfalls konstant. Dieses Gesetz gilt genau dann, wenn die Temperatur konstant ist. Und es besagt, dass, wenn der Druck auf das Gas größer wird, das Volumen dementsprechend kleiner wird. Diese beiden Gesetze können wir nun zusammenfassen zu einem, denn beide Gesetze enthalten das Volumen (V) und beide Gesetze haben als Lösung einen konstanten Wert. Wir erhalten dann: V×(p/t)=const. Das ist nun für uns die endgültige Zustandsgleichung idealer Gase. Und was bedeutet nun diese Formel im Einzelnen? Betrachten wir das wieder an unserem Gasring mit Erhitzen und Druck. Was passiert nun, wenn 1. der Druck immer konstant bleibt? Das kennen wir schon, das war das Gesetz von Gay-Lussac. Ihr erinnert euch? Wenn wir nun das Gas erhitzen, werden die Teilchen in dem Gas immer schneller und das Gas dehnt sich demnach aus. Nun zum 2., euch auch schon bekannten Punkt: Was ist, wenn T konstant ist? T=const? Ach ja, das ist das Boyle-Mariotte-Gesetz. Wenn sich nun also der Druck erhöht, dann bedeutet das, dass das Volumen des Gases sich verkleinert. Die beiden Punkte waren bisher ja nichts Neues. Aber es gibt ja noch eine dritte Variable in der Gleichung, das V. Das kann nämlich auch konstant sein. Aber was passiert denn dann, wenn sich nun beispielsweise die Temperatur des Gases erhöht und das Volumen nicht variabel ist, weil es sich zum Beispiel um einen abgeschlossenen Raum handelt? Dann muss sich, laut der Gleichung, der Druck in dem Gas erhöhen. Das habt ihr schon mal gesehen, wenn ihr Wasser in einem Topf mit Deckel gekocht habt. Irgendwann steigt die Temperatur so sehr und der Druck wird so groß, dass er sogar ausreicht, um den Deckel minimal anzuheben. Dadurch wird das Volumen wieder minimal vergrößert und der Druck sinkt, denn die Gleichung muss ja immer konstant bleiben. Jetzt fragt ihr euch vielleicht noch: Was sind eigentlich ideale Gase? Was soll das bedeuten? Die Gleichung stimmt nämlich eigentlich nur exakt für Gase mit einer sehr, sehr kleinen Dichte. Das bedeutet auch, dass sie ein sehr großes Volumen haben und dann muss man kein Eigenvolumen der einzelnen Gasmoleküle berücksichtigen. Das macht die Sache natürlich einfacher. Außerdem bedeutet eine sehr kleine Dichte, dass alle Teilchen so weit auseinanderliegen, dass keine Anziehungskräfte zwischen diesen Teilchen berücksichtigt werden müssen. Das vereinfacht das alles natürlich auch noch mal. Und obwohl diese idealen Gase so in der Natur eigentlich kaum vorkommen, ist diese Gleichung für die Genauigkeit, mit der wir arbeiten wollen, eine sehr gute Näherung. Aha. Darum heißt es also ideale Gase. Da können wir aber froh sein, dass wir um die Gleichung für reale Gase herumgekommen sind. Die existiert nämlich mittlerweile auch schon und ist um einiges komplizierter. Also, wir können uns mit der Zustandsgleichung für ideale Gase begnügen. Ich hoffe, ich konnte euch mit meinem Video helfen.                                                          

6 Kommentare
  1. Sehr gut und deutlich erklärt :D vorher wusste ich nicht mal wieso es "ideale Gase" heißt

    Von Bazelaagata, vor 9 Monaten
  2. @Tanja: Die beiden Formeln bedeuten das gleiche. Sandra sagt, dass (p*V)/T=konstant. Dies gilt für jeden Zustand einer festen Stoffmenge eines idealen Gases, d.h. es gilt für alle Drücke, Temperaturen und Volumina. Hat ein Zustand den Druck p_1, das Volumen V_1 und die Temperatur T_1 so gilt also (p_1*V_1)/T_1=konstant. Für einen anderen Zustand mit Druck p_2, Volumen V_2 und Temperatur T_2 gilt aber ebenfalls (p_2*V_2)/T_2=konstant. Die Konstante ist in allen Gleichungen die selbe, sie ändert sich ja nicht wenn der Zustand des idealen Gases sich ändert. Also können wir die beiden Gleichungen gleichsetzen und erhalten
    (p_1*V_1)/T_1= (p_2*V_2)/T_2.
    Lg Nikolai

    Von Nikolai P., vor etwa 6 Jahren
  3. Die Formel ist doch p1 x v1 durch T1 = p2 x v2 durch T2 oder etwa nicht ?? Hä?

    Von Tanja F., vor etwa 6 Jahren
  4. Prima auch von der Geschwindigkeit und Aufbau

    Von Goennheimer, vor fast 7 Jahren
  5. Hey, super erklärt !

    Von Elyboy, vor mehr als 7 Jahren
  1. Top!

    Super zur Wiederholung.
    Fand es auch toll, dass du noch mal den Begriff des Idealen Gas erläutert hast.

    Von Lolsusl, vor mehr als 10 Jahren
Mehr Kommentare

Zustandsgleichung idealer Gase Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Zustandsgleichung idealer Gase kannst du es wiederholen und üben.

  • Bestimme, welche Eigenschaft zu den jeweiligen Gesetzen passt.

    Tipps

    Das ideale Gasgesetz setzt sich aus den anderen beiden Gesetzen zusammen.

    Lösung

    Das Gasgesetz $p\cdot V=const.$ ist das Boyle-Mariotte-Gesetz. Die Voraussetzung für dessen Gültigkeit ist, dass die Temperatur konstant ist.

    Das Gasgesetz $\frac V T=const.$ ist das Gay-Lussac-Gesetz. Hierbei ist die Voraussetzung für die Gültigkeit, dass der Druck konstant ist.

    Da bei den meisten Fällen in der Natur aber weder Druck noch Temperatur konstant sind, kann man beide Gesetze zu dem idealen Gasgesetz zusammenfassen (oder: Zustandsgleichung idealer Gase): $V\cdot \frac p T=const.$. Hierbei müssen Druck und Temperatur nicht konstant sein.

  • Bestimme, welche Aussagen für ein ideales Gas zutreffen.

    Tipps

    Das Modell des idealen Gases ist eine Vereinfachung der Realität, bei der man viel weniger berücksichtigen muss.

    Lösung

    Das Modell des idealen Gases nimmt vor allem an, dass die Gasmoleküle kein Eigenvolumen haben, sondern als ausdehnungslose Massepunkte angesehen werden. Das ist in der Realität natürlich nicht so: Die Moleküle sind zwar sehr klein, aber sie haben ein Eigenvolumen. Weiterhin nimmt das Modell an, dass es zwischen den Gasmolekülen und anderen Teilchen keine Kräfte bestehen und sich die Moleküle ganz frei bewegen. In der Realität ist dies auch nicht so, die Teilchen enthalten zum Beispiel Elektronen, die ja eine Ladung haben und sich deswegen gegenseitig anziehen, bzw. abstoßen. Das Modell des idealen Gases ist also nur eine Vereinfachung, damit es für uns nicht so kompliziert ist. Gase mit geringer Dichte entsprechen am besten dieser Näherung.

  • Bestimme die Verhältnisse der Größen in den jeweiligen Gesetzen.

    Tipps

    Die Formel für das Gasgesetz nach Gay-Lussac lautet: $\frac V T=const.$

    Die Formel für das Gasgesetz nach Boyle-Mariotte lautet: $p\cdot V=const.$

    Die Formel für das ideale Gasgesetz lautet: $V\cdot \frac p T=const.$

    Lösung

    Am einfachsten ist es, wenn man sich die Formel zu dem passenden Gesetz anschaut: Was passiert, wenn das Volumen im Boyle-Mariotte-Gesetz größer wird? Da nach dem Boyle-Mariotte-Gesetz $p\cdot V$ immer dieselbe Konstante (innerhalb eines Systems) ergibt, muss der Druck p kleiner werden, damit das Ergebnis stimmen kann. Andererseits kann man sich das vielleicht auch vorstellen: Wenn man eine bestimmt Menge an Gas auf ein größeres Volumen verteilt, dann haben die Gasteilchen mehr "Platz" und der Druck ist somit kleiner.

  • Berechne, wie viel Luft beim Heizen einer Skihütte entweicht.

    Tipps

    Wir können davon ausgehen, dass der Druck innerhalb der Hütte und außerhalb der Hütte gleich ist. Damit dürfen wir das Gesetz von Gay-Lussac benutzen.

    Das Gesetz von Gay-Lussac lautet: $\frac V T=konst.$

    Stelle eine Beziehung mithilfe des Gesetzes von Gay-Lussac her bezüglich des Zustandes, bevor die Hütte aufgeheizt wird (Zustand 1) und nachdem sie aufgeheizt wurde (Zustand 2).

    Die entwichene Luft ist genau die Differenz der Volumen, welches die Luft bei 22°C einnimmt und welches sie bei -14°C einnimmt.

    Achte darauf, dass du die Temperaturen in der Einheit Kelvin einsetzt, da wir sonst (wegen der Minusgrade) ein falsches Ergebnis erhalten.

    Lösung

    Wir können davon ausgehen, dass der Druck innerhalb der Hütte und außerhalb der Hütte gleich ist. Damit dürfen wir das Gesetz von Gay-Lussac benutzen: $\frac V T=konst.$

    Die Idee ist, dass wir das Volumen berechnen, welches die Luft bei 22°C einnimmt (Zustand 2), also $T_2=22°C=295K$ und $V_2$ ist unser unbekanntes Volumen. Im Zustand 1 (vor dem Aufheizen) haben wir ein Volumen $V_1=100m^3$ und eine Temperatur $T_1=-14°C=259K$.

    Da nun nach dem Gesetz von Gay-Lussac alle Temperatur/Volumen Wertepaare dieselbe Konstante ergeben, können wir unsere beiden Situationen gleichsetzen. Dabei ist darauf zu achten, dass man die Temperaturen in der Einheit Kelvin einsetzt, da wir sonst (wegen der Minusgrade) ein falsches Ergebnis erhalten. Es gilt:

    $\frac{V_1} {T_1}= \frac{V_2}{T_2}$.

    Nach $V_2$ umgestellt ergibt sich: $V_2=\frac{T_2}{T_1}\cdot V_1 =\frac{295K}{259K}\cdot 100m^3=113,9m^3$.

    Also entweichen der Hütte genau $\Delta V=V_2-V_1=113,9m^3-100m^3=13,9m^3$ Luft.

  • Berechne die Temperatur eines Kühlschranks mithilfe des Gasgesetztes von Gay-Lussac

    Tipps

    Das Gasgesetz von Gay-Lussac lautet $\frac V T=konst.$

    Stelle eine Beziehung mithilfe des Gesetzes von Gay-Lussac her bezüglich der Situation, bevor der aufgeblasene Luftballon in den Kühlschrank kommt (Zeitpunkt 1), und unmittelbar nachdem er aus dem Kühlschrank kommt (Zeitpunkt 2).

    Lösung

    Da wir, nachdem wir den Luftballon aufgeblasen haben, keine Luft mehr hinzufügen, ist unser Druck in dem Luftballon konstant. Damit dürfen wir das Gesetz von Gay-Lussac benutzen: $\frac V T=konst.$

    Zum Zeitpunkt 1 (vor dem Kühlen) haben wir ein Volumen $V_1=1dm^3$ und eine Temperatur $T_1=37°C=310,15K$. Zum Zeitpunkt 2 (direkt nach dem Kühlen) haben wir ein Volumen von $V_2=0,9dm^3$ und unsere Temperatur $T_2$ ist die unbekannte Kühlschranktemperatur.

    Da nun nach dem Gesetz von Gay-Lussac alle Temperatur/Volumen Wertepaare dieselbe Konstante ergeben, können wir unsere beiden Situationen gleichsetzen. Es gilt: $\frac{V_1} {T_1}= \frac{V_2}{T_2}$.

    Nach $T_2$ umgestellt und eingesetzt ergibt sich: $T_2=\frac{V_2}{V_1}\cdot T_1 =\frac{0,9dm^3}{1dm^3}\cdot 310,15K=279,135K\approx 6^\circ C$

  • Berechne mit Hilfe des Gasgesetzes von Boyle-Mariotte, bei welchem Druck ein Luftballon platzt.

    Tipps

    Das Gesetz von Boyle-Mariotte lautet: $p \cdot V=konst.$

    Stelle eine Beziehung mithilfe des Gesetzes von Boyle-Mariotte her bezüglich des Zustandes bei dem normal aufgeblasenen Luftballon (Zustand 1) und bei einem, der kurz vor dem Platzen ist (Zustand 2).

    Lösung

    Da es keine Temperaturänderung gibt, ist die Temperatur in dem Luftballon konstant. Damit dürfen wir das Gesetz von Boyle-Mariotte benutzen: $p \cdot V=konst.$

    Im Zustand 1 (ganz normal aufgeblasen) haben wir ein Volumen $V_1=1,2dm^3$ und einen Druck $p_1=1013mbar$. Im Zustand 2 (kurz vor dem Platzen) haben wir ein Volumen von $V_2=2dm^3$ und einen Druck $T_2$, welcher der gesuchte Druck ist, ab dem der Luftballon platzt. Da nun nach dem Gesetz von Boyle-Mariotte alle Druck/Volumen-Wertepaare dieselbe Konstante ergeben, können wir unsere beiden Zustände gleichsetzen. Es gilt: $p_1 \cdot V_1= p_2 \cdot V_2$.

    Nach $p_2$ umgestellt ergibt sich: $p_2=p_1 \cdot \frac{V_1}{V_2}=1013mbar \cdot \frac{1,2dm^3}{2dm^3}=607,8mbar$.