30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Gesetz von Gay-Lussac und absolute Temperatur 07:42 min

Textversion des Videos

Transkript Gesetz von Gay-Lussac und absolute Temperatur

Hallo und herzlich willkommen. Heute wollen wir uns damit beschäftigen, was mit dem Volumen von Gasen passiert, wenn man die Temperatur ändert während man den Druck konstant hält. Dabei werden wir lernen, was das Gesetz von Gay-Lyssac besagt und wie man daraus die absolute Temperatur ableiten kann. Außerdem wird der Begriff des Volumenausdehnungskoeffizienten eingeführt. Gase dehnen sich wie die meisten Festkörper und Flüssigkeiten aus, wenn man sie erwärmt. Das kannst du zum Beispiel beobachten, wenn du einen aufgeblasenen Luftballon in die Sonne legst. Nach und nach wird er sich erwärmen und man kann beobachten, dass er sich weiter aufbläst. Es kann sogar sein, dass sich die Luft in seinem Inneren so stark ausdehnt, dass der Ballon platzt. Das liegt daran, dass sich die Teilchen des Gases im Inneren des Ballons erwärmen. Erwärmen bedeutet, dass sie mehr Energie haben und sich schneller bewegen. Dadurch benötigen sie auch mehr Platz. Das Gas dehnt sich aus und nimmt ein größeres Volumen ein. Um den Zusammenhang von Temperatur und Volumen bei konstantem Druck zu untersuchen, betrachten wir folgendes Experiment. Wir nehmen einen Kolben in dessen Inneren eine feste Menge Gas eingeschlossen ist. Der obere Verschluss des Kolbens ist beweglich und auf ihn liegt ein Gewicht. Der Druck im Inneren des Kolbens ist gleich der Gewichtskraft des Gewichts geteilt durch die Oberfläche des oberen Verschlusses. Da sich beide Größen im Laufe des Versuchs nicht ändern, ist auch der Druck konstant. Der Versuch sollte mit verdünnten Gasen bzw. bei geringem Druck durchgeführt werden. Warum, sehen wir später. Nun messen wir die Temperatur im Kolben und das Volumen, das das Gas einnimmt. Die Temperatur im Kolben kann man dabei mit einer Heizung einstellen. Anschließend tragen wir das Volumen in Abhängigkeit von der Temperatur in einem TV Diagramm ein. Die Temperatur wird dabei in Kelvin gemessen. Dabei entspricht eine Temperatur von 273,15 K gerade 0 °C. Das Volumen wird in Kubikzentimetern angegeben. Betrachtet man die Messwerte, so erkennt man, dass ein linearer Zusammenhang besteht. Es kann also eine Gerade gezeichnet werden. Der lineare Zusammenhang sagt uns, dass der Quotient aus Volumen und Temperatur konstant ist. Betrachtet man also zwei Messpunkte bei unterschiedlichen Volumina und Temperaturen, so ist der Quotient aus V1 und T1 gleich dem Quotienten aus V2 und T2. Diesen Zusammenhang nennt man auch das Gesetz von Gay-Lyssac. Eine andere Formulierung des Gesetzes von Gay-Lyssac ist folgende: V von T = V0 mal (1+ Gamma 0 (T minus T0)). Das gilt nur für konstanten Druck. Dabei steht V von T für das Volumen bei einer bestimmten Temperatur, T für die Temperatur, bei der V von T gemessen wird, T0 für die Temperatur von 273,15 K, was gerade der Nullpunkt der Celsius Skala ist, und V0 für das Volumen bei T0. Gamma 0 ist der Volumenausdehnungskoeffizient des Gases. Der Volumenausdehnungskoeffizient eines Gases gibt an, wie sich das Volumen des Gases ändert, wenn die Temperatur bei konstantem Druck um 1 K steigt. In Formel kann man das folgendermaßen ausdrücken: Delta V = Gamma mal V0 mal Delta T. p ist dabei konstant. Für Gamma gilt dabei Gamma = 1 über T. Für Gamma 0 nehmen wir Gamma = 1 über T0, wobei T0 = 273,15 K sind. Die Einheit des Volumenausdehnungskoeffizienten ist also 1 über Kelvin und er ist stark temperaturabhängig. Das TV Diagramm liefert uns eine weitere interessante Erkenntnis. Hat man nämlich genügend Messwerte, so kann man die Gerade auch in Bereiche verlängern, in denen man keine Messwerte aufgenommen hat. Das nennt man dann extrapolieren. Machen wir das mit unseren Werten, so sehen wir, dass das Volumen irgendwann 0 wird. Da das Volumen nicht negativ werden kann, muss hier also die niedrigstmögliche Temperatur sein. An diesem absoluten Temperaturnullpunkt kann das Gas nicht weiter abgekühlt werden. Auf der Kelvin Skala liegt diese Temperatur per Definition bei 0 K, auf der Celsiusskala bei -273,15 °C. Aber wie kann ein Gas ein Volumen von 0 annehmen? An dieser Stelle wollen wir uns nochmal anschauen, warum es bei einer Temperatur größer 0 K überhaupt ein Volumen hat. Zum einen bewegen sich die Teilchen und durch diese Bewegung nehmen sie einen gewissen Raum ein, zum anderen haben auch die kleinsten Teilchen eine gewisse Ausdehnung. Kühlt man ein Gas fast auf den absoluten Temperaturnullpunkt ab, so bewegen sie sich kaum noch. Allerdings haben sie immer noch ihr eigenes Volumen. Wir benutzen hier aber ein idealisiertes Modell, das so genannte ideale Gas, um die Phänomene zu beschreiben. In diesem Modell wird das Eigenvolumen der Teilchen vernachlässigt. Die Wechselwirkung der Teilchen finden nur durch ideale Stöße untereinander und nur daran statt. Aus dem Modell des idealen Gases kann man auf theoretischem Weg den bereits beschriebenen linearen Zusammenhang zwischen Temperatur und Volumen bei konstantem Druck herleiten. Dies ist Teil der kinetischen Gastheorie. Das ist auch der Grund, warum im Versuch verdünnte Gase verwendet werden, da dann das Eigenvolumen der Teilchen und ihre Wechselwirkung untereinander nicht so sehr ins Gewicht fallen. Damit sind die Voraussetzungen für die Gültigkeit des Modells des idealen Gases näherungsweise erfüllt und die daraus abgeleiteten Vorhersagen stimmen mit dem Experiment überein. Bei höheren Dichten, also bei unverdünnten Gasen, findet man experimentell keinen linearen Zusammenhang zwischen Temperatur und Volumen bei gleichem Druck. So, was haben wir heute gelernt? Gase dehnen sich aus, wenn man sie erwärmt und der Druck konstant gehalten wird. Das Volumen ist dabei proportional zur Temperatur. Das heißt, es besteht ein linearer Zusammenhang zwischen beiden Werten für P gleich konstant. Beschrieben wird dieser Zusammenhang mit dem Gesetz von Gay-Lyssac: V von T = V0 mal (1+ Gamma 0 mal (T minus T0)). Gamma ist dabei der Volumenausdehnungskoeffizient, der angibt, wie sich das Volumen bei einer Temperaturänderung von 1 K ändert. Extrapoliert man die Gerade im TV Diagramm, so erhält man den absoluten Temperaturnullpunkt bei 0 K bzw. -273,15 °C. So das war’s auch schon zum Gesetz von Gay-Lyssac. Ich hoffe ihr habt was gelernt, bis zum nächsten Mal.