50 % Halbjahreszeugnis-Aktion —
nur bis 24.02.2019

30 Tage kostenlos testen und anschließend clever sparen.

Michelson-Interferometer 07:14 min

Textversion des Videos

Transkript Michelson-Interferometer

Hallo und herzlich willkommen. In diesem Video beschäftigen wir uns mit dem Michelson-Interferometer. Mit ihm kann man Längenänderungen messen, die zehn Millionen mal kleiner sind als ein Millimeter. Damit du verstehst, wie das funktioniert, wiederholen wir kurz das Thema Interferenz. Danach zeige ich dir den Aufbau und die Funktionsweise des Michelson-Interferometers. Und abschließend lernst du dann noch, wie man damit die Brechzahl von Gasen bestimmen kann. Und damit kann es auch schon losgehen. Zuerst also eine kurze Wiederholung zum Thema „Interferenz“. Die Wellenlänge einer Lichtquelle kürzen wir mit Lambda ab, den Gangunterschied mit Delta s. Für konstruktive Interferenz muss Delta s gleich K mal Lambda sein (Delta s = K * Lambda), wobei K eine ganze Zahl ist. Für destruktive Interferenz lautet die Bedingung: Delta s ist gleich, Klammer auf, K plus ein halb, Klammer zu, mal Lambda. Delta s = (K + ½) * Lambda. Wobei K wieder eine ganze Zahl ist. Trifft Licht auf eine dünne Glasscheibe, so kommt es zu Interferenz. Grund dafür ist folgendes: Trifft das Licht auf die Vorderseite, so wird ein Teil reflektiert, hier Strahl Eins. Ein Teil wird durchgelassen. Man spricht von „partieller Reflexion“. Diese tritt auch wieder an der Rückseite des Glases auf. Strahl Zwei tritt wieder an der Vorderseite aus. Er legt einen Delta s längeren Weg zurück als Strahl Eins. An der Vorderseite treffen Eins und Zwei dann wieder zusammen und überlagern sich. Genügt der Gangunterschied Delta s unter Bedingung für destruktive Interferenz, K plus ein halb mal Lambda, so löschen sich beide Strahlen aus. Mit diesen Grundlagen können wir uns nun dem Michelson-Interferometer zuwenden. Beginnen wir mit dem Aufbau. Es besteht aus einer Lichtquelle L, heutzutage ein Laser, und einer Anordnung von Spiegeln. Das Licht des Lasers trifft auf einen Strahlteiler, hier T abgekürzt. Dieser ist an seiner Vorderseite so beschichtet, dass durch partielle Reflexion die Hälfte des Lichts zu Spiegel Eins und die andere Hälfte auf Spiegel Zwei geleitet wird. Dort werden die Strahlen komplett reflektiert und gelangen über den Strahlteiler auf einen Schirm, auf dem sie interferieren. Dabei kommt es nach den Interferenzbedingungen je nach Gangunterschied zu konstruktiver oder destruktiver Interferenz. Das hängt von der Position der Spiegel ab. Auf dem Schirm sieht man eine kreisrunde Struktur mit Minima, in dem kein Licht zu sehen ist und Maxima, in dem das Licht doppelt so hell ist. Verschiebt man die Spiegel, so wechseln sich Minima und Maxima im Zentrum ab. Dabei weiß man, dass bei einem Wechsel von Minimum auf Maximum der Gangunterschied sich um Lambda halbe geändert hat. Somit wurde auch der Spiegel um Lambda halbe verschoben. Mit einem Michelson-Interferometer sind also Abstandsänderungen messbar, die der Hälfte der Wellenlänge des eingestrahlten Lichtes entsprechen. Sichtbares Licht hat eine Wellenlänge Lambda von einigen 100nm. Man kann also mit diesem Aufbau Abstandsänderungen im Bereich von einem Millimeter geteilt durch zehn Millionen messen. Erfunden wurde das Michelson-Interferometer von Albert Abraham Michelson. Er erhielt 1907 als erster Amerikaner den Nobelpreis. Sein Interferometer wurde unter anderem in dem berühmten Michelson-Morley-Versuch bei der Suche nach dem sogenannten Äther genutzt. Eine weitere interessante Anwendung zeige ich dir jetzt. Man kann mit diesem Aufbau nämlich auch die Brechzahl von Gasen, zum Beispiel Luft bestimmen. Dazu bringt man in einen der beiden Strahlgänge einen mit Luft gefüllten Behälter. Die Länge SB dieses Behälters beträgt unter Normalbedingungen ein ganzzahliges Vielfaches K der Wellenlänge in Luft, LambdaLuft. Außerdem ist der Behälter evakuierbar. Sinkt der Druck in ihm, ändert sich die Phase des durchgehenden Lichtstrahls. Bei einem bestimmten Druck ist die Phase wieder die gleiche wie am Anfang. Das Interferenzmuster hat sich dann um ein Maximum verschoben. Bis zur vollständigen Evakuierung werden auf dem Bildschirm N Maxima durchlaufen. Für die Strecke 2SB, die das Licht im Behälter zurücklegt, gilt: 2SB = 2K * LambdaLuft = (2K - N) * Lambda0. Lambda0 ist die Wellenlänge des Lichts im Vakuum. Daraus folgt: LambdaLuft / Lambda0 = (2K - N) / 2K. Außerdem gilt, dass der Quotient aus der Lichtgeschwindigkeit in Luft cLuftund im Vakuum c0 gleich dem Quotienten der Brechungszahlen im Vakuum n0 und in Luft nLuft ist. n0 = 1. Daraus folgt: cLuft / c0 = 1 / nLuft. Die Frequenz f des Lichtes bleibt immer unverändert und ist somit in beiden Medien gleich. Es gilt: c = f * Lambda. Daraus folgt wiederum: 1 / nLuft = LambdaLuft / Lambda0. Das ist gleich (2K - N) / 2K. Was wiederum 1 - N / 2K ist. Aus SB = K * LambdaLuft folgt nach Umstellung auf K: 1 / nLuft = 1 - (N * LambdaLuft / 2SB) Man muss also nur die Anzahl der Maxima, die Wellenlänge des Lichtes in Luft und die Länge des Behälters wissen, um den Brechungsindex zu berechnen. Mit dieser Methode kann man die Brechzahl in jedem durchsichtigen Gas bestimmen. So, was hast du eben gelernt? Ein Michelson-Interferometer besteht aus einer Lichtquelle, einem Strahlteiler, zwei Spiegeln und einem Bildschirm. Im Zentrum des Bildschirms überlagern sich die zwei getrennten Lichtstrahlen und man beobachtet je nach Gangunterschied konstruktive oder destruktive Interferenz. Und da der Gangunterschied von den Abständen der Spiegel zum Strahlteiler abhängt, sind mit dieser Methode kleinste Abstandsänderungen messbar. Außerdem kann man mit einem zusätzlichen Gasbehälter im Strahlengang die Brechzahl n eines Gases bestimmen. Es gilt: 1 / nGas = 1 - (N * LambdaGas / 2SB). Das war es zum Thema Michelson-Interferometer. Ich hoffe, du hast was gelernt. Tschüss und bis zum nächsten Mal.

4 Kommentare
  1. Default

    !22Danke:p

    Von Winter Mario, vor 9 Tagen
  2. Default

    Woher weiß man das Sb=k*lambda luft gilt? das ist doch wenn nur zufällig so, oder?

    Von Jacob 4, vor 22 Tagen
  3. Default

    Soll das Spiegel nicht um lambda/4 verschoben werden (aufgrund des hin und rücklaufendes Strahls? (lambda/4 + lambda/4 = lamda/2 )

    Von Bilgi Poseti, vor etwa 2 Jahren
  4. Default

    Hallo Jochen Kalt,
    müsste nicht ein Verschieben eines Spiegels um Lambda/2 aufgrund de hin und rücklaufenden Strahls einen Gangunterschied von Lambda bewirken und damit einen Wechsel von Intereferenzmaximum über Minimum zu Maximum? (3. Minute des Videos)?

    Von Torbenherber, vor mehr als 2 Jahren