Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Zweiseitige Hypothesentests

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.7 / 9 Bewertungen
Die Autor*innen
Avatar
Jonathan Wolff
Zweiseitige Hypothesentests
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Zweiseitige Hypothesentests Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Zweiseitige Hypothesentests kannst du es wiederholen und üben.
  • Vervollständige den zweiseitigen Signifikanztest.

    Tipps

    Beim zweiseitigen Signifikanztest kann die Wahrscheinlichkeit der Alternativhypothese größer oder kleiner als die der Nullhypothese sein.

    Somit gibt es nicht eine feste kritische Zahl wie beim einseitigen Test, sondern zwei Grenzen innerhalb derer der Annahmebereich von $H_0$ liegt.

    Lösung

    Man möchte mit dem zweiseitigen Signifikanztest überprüfen, ob die Wahrscheinlichkeit, die man als Nullhypothese für ein bestimmtes Ereignis aufgestellt hat, der Wahrheit entspricht oder ob sie kleiner oder sogar größer ist.

    Damit sucht man nicht mehr nur nach einer oberen bzw. unteren Grenze, sondern nach allen von der Nullhypothese abweichenden Wahrscheinlichkeiten.

    Dabei sind die Hypothesen mit ihren Wahrscheinlichkeiten vorgegeben:

    • $H_0:p=p_0$
    • $H_1:p\ne p_0$
    Auch das Signifikanzniveau $\alpha$ ist oft vorgegeben.

    Jetzt geht es darum, Annahme- sowie Ablehnungsbereich von $H_0$ zu finden, dazu gibt es eine untere und eine obere Grenze des Annahmebereiches.

    Diese Grenzen sind $k_1$ und $k_2$. Wenn das Ergebnis also im Ablehnungsbereich von $H_0$ liegt, gilt für die Prüfgröße:

    $X\le k_1$ bzw. $X\ge k_2$

  • Bestimme den Annahmebereich von $H_0$.

    Tipps

    Die Wahrscheinlichkeiten beider Grenzen dürfen $5~\%$ nicht überschreiten, daher wählt man für jede Grenze bei der Berechnung $\frac{\alpha}{2}$.

    $P(X\le k_1) \le 2,5~\%$

    $P(X\le k_2)\ge 97,5~\%$

    Wenn $X$ binomialverteilt ist mit $n=60$ und $p=\frac16$, dann gelten die folgenden Wahrscheinlichkeiten.

    • $P(X \le 4) \approx 0,0202$
    • $P(X \le 5) \approx 0,0512$
    • $P(X \le 15) \approx 0,9658$
    • $P(X \le 16) \approx 0,9836$
    Lösung

    Beginnen wir mit dieser Rechnung, indem wir $\alpha$ halbieren, da die Einzelwahrscheinlichkeiten der Grenzen in Summe das Signifikanzniveau nicht überschreiten dürfen.

    $\frac{\alpha}{2}=\frac{5~\%}{2}=2,5~\%=0,025$

    Nun suchen wir zuerst $k_1$. Da sich Signifikanzniveau und die $k$ nach dem Fehler erster Art richten, also der Wahrscheinlichkeit dafür, fälschlicherweise ein Ergebnis aus dem Verwerfungsbereich von $H_0$ zu erhalten, muss $k_1$ so aussehen:

    $P(X \le k_1) \le 0,025$

    Gesucht ist also die Untergrenze, für die die Summe der unteren Teile der möglichen Prüfgrößen $X$ die $2,5~\%$ nicht überschreitet.

    In einer kumulierten Wahrscheinlichkeitstabelle kannst du nachsehen, dass dies für $k_1=4$ der Fall ist, denn $P(X \le 4)=0,0202$, also gerade noch unter dem maximal erlaubten Wert.

    Nun bestimmen wir $k_2$, hierfür gilt

    $P(X\ge k_2)\le 0,025$

    Das können wir folgendermaßen umformen:

    $\begin{align} 1-P(X\le k_2-1) &\le 0,025 \\ P(X\le k_2-1) &\ge 0,975 \\ P(X \le 16) &=0,9836 \end{align}$

    Für $k=16$ ist diese Ungleichung also erfüllt. Also muss $k_2-1=16$ sein. Damit erhalten wir $k_2=17$.

    Nun können wir den Annahmebereich bestimmen. Er muss größer als $k_1$ und kleiner als $k_2$ sein.

    Damit gilt:

    $k_1 < X < k_2$ also $4 < X < 17$ also $5 \le X \le 16$

  • Stelle die Hypothesen auf und benenne die Größen des Tests.

    Tipps

    Die Nullhypothese ist eine feste, die Alternativhypothese eine davon abweichende Wahrscheinlichkeit.

    Das Signifikanzniveau $\alpha$ ist die gesamte Irrtumswahrscheinlichkeit eines Fehlers erster Art.

    Der Umfang eines Versuchs $n$ ist die Anzahl der Durchläufe im Test.

    Lösung

    Für das Beispiel mit dem Jäger ist als Nullhypothese die zu überprüfende Trefferquote zu wählen. Sie ist eine feste Größe, die es zu beweisen oder verwerfen gilt.

    Die Alternativhypothese ist eine davon abweichende Wahrscheinlichkeit, sie kann größer oder kleiner als die der Nullhypothese sein.

    Es gilt:

    • $H_0:p_0=0,8$
    • $H_1:p_1\ne 0,8$
    Der Umfang ist die Anzahl der abgefeuerten Testschüsse $n=50$.

    Das Signifikanzniveau, das nicht überschritten werden darf, liegt bei $\alpha=10~\%$ und ist die Gesamtheit der Wahrscheinlichkeit eines Fehlers erster Art.

  • Ermittle den Annahme- und Verwerfungsbereich von $H_0$.

    Tipps

    Du musst mit einer kumulierten Wahrscheinlichkeitstabelle mit den Parametern $n=50$ und $p=0,8$ arbeiten.

    Der Annahmebereich setzt sich zusammen aus:

    $P(X\le k_1) \le 0,05$ und

    $P(X\ge k_2-1) \ge 0,95$

    Hier siehst du einen Auszug aus einer kumulierten Binomialverteilung für $n=50$ und $p=0,8$.

    Hier siehst du einen Auszug aus einer kumulierten Binomialverteilung für $n=50$ und $p=0,8$.

    Lösung

    Wenn das Signifikanzniveau bei $10~\%$ liegt, darf die Wahrscheinlichkeit für jeweils einen der zwei Verwerfungsbereiche nicht größer sein, als die Hälfte:

    $\frac{\alpha}{2}=0,05$

    Nun benötigen wir eine Tabelle der kumulierten Wahrscheinlichkeit mit den Parametern $n=50$ und $p=0,8$, um die Grenzen $k_1$ und $k_2$ zu ermitteln (s. Bild).

    Fangen wir mit dem ersten $k_1$ an.

    $P(X\le k_1) \le 0,05$

    In der Tabelle sehen wir, dass für $k=34$ die Wahrscheinlichkeit $3,8~\%$ beträgt, also gerade so unter den $5~\%$ liegt. Damit ist unser $k_1=34$

    Bei $k_2$ ist das etwas schwieriger. Denn wir suchen:

    $P(X\ge k_2)$

    Das berechnen wir mit der Gegenwahrscheinlichkeit. Dazu ziehen wir von $k_2$ noch eins ab, da ja alles unter diesem Wert herausgerechnet werden soll.

    $\begin{align} 1-P(X\le k_2-1) &\le 0,05 \\ P(X \le k_2 - 1) &\ge 0,95 \\ P(X \le 44) &=0,952 \end{align}$

    Also wenn $k_2-1=44$ ist, dann ist $k_2=45$.

    Unser Annahmebereich von $H_0$ liegt innerhalb dieser Grenzen. Mit $k_1 < X < k_2$ erhalten wir also den Annahmebereich

    $34 < X < 45$ bzw. $35 \le X \le 44$.

    Der Verwerfungsbereich liegt nun jeweils darunter bzw. darüber.

    $0 \le X \le 34$ und $45\le X \le 50$

  • Bestimme die Größen des zweiseitigen Signifikanztests.

    Tipps

    Beim zweiseitigen Signifikanztest kann die Wahrscheinlichkeit der Alternativhypothese größer oder kleiner als die der Nullhypothese sein.

    Somit gibt es nicht eine feste kritische Zahl wie beim einseitigen Test, sondern zwei Grenzen innerhalb derer der Annahmebereich von $H_0$ liegt.

    Lösung

    In diesem Beispiel mit dem Würfel sind die wichtigen Größen bereits vorgegeben. Da man den Würfel zum Test $60$-mal werfen möchte, ist der Umfang $n=60$.

    Die Nullhypothese ist hier die gängige Wahrscheinlichkeit eine sechs zu Würfeln. Diese liegt bei einem nicht gezinkten Würfel, wie für alle anderen Zahlen, bei $p=\frac{1}{6}$.

    Damit ist die Wahrscheinlichkeit der Alternativhypothese größer oder kleiner, also gilt $H_1:p\ne \frac{1}{6}$.

    Das Signifikanzniveau soll die genannten $5~\%$ nicht überschreiten, man kürzt es mit einem $\alpha$ ab, da es die maximale Wahrscheinlichkeit eines Fehlers erster Art beschreibt.

    Nun werden mit Hilfe dieser Größen der Annahme- und Ablehnungsbereich von $H_0$ gesucht. Kann man $H_0$ bestätigen, ist es ein fairer Würfel. Wird $H_0$ verworfen, ist er gezinkt.

  • Bestimme die Wahrscheinlichkeit, ein Ergebnis aus dem Annahmebereich von $H_0$ zu erhalten.

    Tipps

    Es gilt $P(a \le X \le b)=P(X \le b)-P(X \le a-1)$.

    Arbeite mit dieser kumulierten Tabelle für $n=50$ und $p=0,8$.

    Arbeite mit einer kumulierten Tabelle für $n=100$ und $p=0,8$ und lies hier die Werte ab.

    Lösung

    Um die Wahrscheinlichkeit zu bestimmen, eine Prüfgröße $X$ innerhalb des Annahmebereichs von $H_0$ zu erhalten, brauchen wir alle möglichen Ergebnisse innerhalb des Annahmebereichs.

    Der Annahmebereich ist $35 \le X \le 44$

    Mit Hilfe einer kumulierten Wahrscheinlichkeitstabelle (Bild) erhalten wir die Gesamtwahrscheinlichkeit bei fünfzig Schüssen so:

    $\begin{align} P(35 \le X \le 44) &=P(X\le 44) - P(X\le 34) \\ &\approx 0,9520 - 0,0310 \\ &=0,9210 \\ &=92,10~\% \end{align}$

    Man erhält beim ursprünglichen Test also zu $92,10~\%$ ein Ergebnis, das im Annahmebereich von $H_0$ liegt. Doch wie ist es, wenn wir die Schusszahl verdoppeln?

    Dazu brauchen wir jetzt eine Tabelle mit $n=100$.

    $\begin{align} P(35 \le X \le 44) &=P(X\le 44) - P(X\le 34) \\ &\approx0,0000 - 0,0000 \\ &=x 0~\% \end{align}$

    Die Wahrscheinlichkeit für ein Ergebnis im Annahmebereich ist rapide gesunken (fast gegen Null, nie genau Null), die für ein Ergebnis im Verwerfungsbereich hingegen stark angestiegen. Das liegt daran, dass die Bereiche nicht an den größeren Umfang des Versuches angepasst wurden.

    Verändert man also die Grenzen $k_1$ und $k_2$ bei einem anderen Versuchsumfang nicht, steigt die Gefahr eines Fehlers erster Art sehr stark an. Er kann bei größeren Veränderungen der Stichprobe fast unvermeidbar werden, wenn man die Bereiche nicht anpasst.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.299

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.943

Lernvideos

37.087

Übungen

34.333

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden