30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

f(x)=ax² – Einführung 08:11 min

Textversion des Videos

Transkript f(x)=ax² – Einführung

Vielleicht ist es dir noch nicht aufgefallen, aber Parabeln begegnen dir oft im Alltag. Allerdings können alle diese Parabeln etwas anders aussehen. Hmm. Ob sich das mathematisch erklären lässt? Schauen wir uns hierfür doch quadratische Funktionen der Form f(x)=ax Quadrat an. Betrachten wir aber zunächst die quadratische Funktion f(x)=x Quadrat. Wir erstellen hierfür eine Wertetabelle. Dafür setzen wir in unsere Funktionsgleichung die x-Werte -2, -1, 0, 1 und 2 ein und berechnen die zugehörigen Funktionswerte. Diese sind 4, 1, 0, 1 und 4. Diese Wertepaare können wir in ein Koordinatensystem eintragen... und die Punkte verbinden, wir erhalten diese Parabel. Doch wie kommt es nun, dass Parabeln unterschiedlich aussehen können? Die allgemeine Funktionsgleichung einer quadratischen Funktion lautet f(x)=ax²+bx+c. Sie setzt sich aus dem quadratischen Glied, dem linearen Glied und dem Absolutglied zusammen. Bei der Funktionsgleichung f(x)=x² haben wir nur das quadratische Glied, also einen Spezialfall, bei dem die Koeffizienten b und c gleich Null sind. Wir können erkennen, dass in unserem Beispiel f(x)=x Quadrat der Koeffizient a gleich 1 sein muss. Hier dargestellt ist die sogenannte Normalparabel. Sie ist der Graph der Funktion f(x)=x Quadrat. Es handelt sich hierbei um eine Parabel, die ihren Scheitelpunkt, hier also ihren tiefsten Punkt, im Koordinatenursprung hat und symmetrisch zur y-Achse verläuft. Was für einen Einfluss hat nun der Koeffizient a auf den Parabelverlauf? Wir betrachten hierfür den Fall, dass der Koeffizient a gleich 2 ist also die quadratische Funktion f(x)=2x Quadrat. Wieder erstellen wir uns eine Wertetabelle für dieselben x-Werte. Unsere Funktionsgleichung liefert uns diesmal die Funktionswerte 8, 2, 0, 2 und 8. Wir zeichen auch den zu dieser Funktion gehörenden Graphen. Wie hat die Veränderung des Koeffizienten a die Parabel beeinflusst? Im Vergleich zu der Normalparabel ist diese Parabel entlang der y-Achse gestreckt, man sagt auch, dass die Parabel schmaler ist. Wie wird der Graph wohl verlaufen, wenn wir den Koefizienten a erhöhen? Setzen wir zum Beispiel für den Koeffizienten a 3 ein. Hier ist der Graph zur Funktionsgleichung f(x)=3x Quadrat. Setzen wir für a 4 ein, sieht der Graph so aus die zugehörigen Funktionsgraphen werden also immer schmaler. Merke dir: für einen positiven Koeffizienten a: Je größer a wird, desto schmaler wird die jeweilige Parabel. Doch was geschieht, wenn der Koeffizient a kleiner ist als 1, zum Beispiel 0,5? stellen wir eine Wertetabelle für die Funktionsgleichung f(x)= 0,5 x Quadrat auf. Hierfür erhalten wir die Funktionswerte 2; 0,5; 0; 0,5 und 2 und zeichnen den zugehörigen Graphen in unser Koordinatensystem. Wir erhalten eine Parabel, welche gegenüber der Normalparabel entlang der y-Achse gestaucht ist, man sagt auch die Parabel ist breiter. Wie verändert sich diese Parabel nun, wenn der Koeffizient a noch kleiner gewählt wird? Hierfür setzen wir für a 0,4 ein dies ist der zugehörige Funktionsgraph. Wählen wir den Koeffizienten a gleich 0,3, so erhalten wir eine Parabel, welche nochmal breiter ist, als die zur Funktionsgleichung f(x)= 0,4 x Quadrat. Merke dir: für positive Koeffizienten a: Je kleiner der Koeffizient a wird, desto breiter wird die jeweilige Parabel. Nun haben wir allerdings nur positive Werte für den Koeffizienten a betrachtet. Was würde denn passieren, wenn a negativ wird? Wir wählen a gleich -0,5 und erstellen die zugehörige Wertetabelle. Nun können wir die Parabel zeichnen. Diese ist, im Vergleich zur Normalparabel, an der x-Achse gespiegelt und verläuft breiter, ist also entlang der y-Achse gestaucht. Wir untersuchen noch die Parabel zur Funktion f(x)=-2x Quadrat. Auch hier stellen wir die zugehörige Wertetabelle auf. Wie sieht nun der zugehörige Funktionsgraph aus? Dieser ist eine Parabel, welche im Vergleich zur Normalparabel an der x-Achse gespiegelt ist und schmaler verläuft. Merke dir: Ist der Koeffizient a negativ, so ist die jeweilige Parabel an der x-Achse gespiegelt. Lass uns unsere Feststellungen noch einmal zusammenfassen. Quadratische Funktionen der Form f(x)=ax Quadrat sind spezielle quadratische Funktionen, deren Funktionsgraphen durch den Koordinatenursprung verlaufen und welche zur y-Achse symmetrisch sind. Der Koeffizient a der quadratischen Funktion f(x)=ax Quadrat wird auch als Streckfaktor bezeichnet. Ist dieser gleich 1, so liegt die sogenannte Normalparabel vor. Diese hat ihren Scheitel im Koordinatenursprung und ist nach oben geöffnet. Ist der Streckfaktor größer als 1, wie zum Beispiel bei der Funktion f(x) =2 x Quadrat so ist die Parabel gegenüber der Normalparabel schmaler. Für einen positiven Streckfaktor, zwischen 0 und 1, wie zum Beispiel bei der Funktion f(x) =0,5 x Quadrat ist die Parabel breiter als die Normalparabel. Ist der Koeffizient a negativ, so liegt eine zur x-Achse gespiegelte Parabel vor. Für den Streckfaktor a gleich -1, wird die Normalparabel an der x-Achse gespiegelt. Auch diese Funktion wird manchmal als eine Normalparabel bezeichnet. Für einen Streckfaktor kleiner als -1, wie zum Beispiel bei f(x) = -2 x Quadrat, ist die Parabel im Vergleich zur nach unten geöffneten Normalparabel schmaler. Liegt a zwischen -1 und 0, wie zum Beispiel bei der Funktion f(x) = -0,5 x Quadrat, so ist die Parabel gegenüber der nach unten geöffneten Normalparabel breiter. Die Wahl des Koeffizienten a hat also eine große Auswirkung auf das Aussehen der Parabel. Außerdem hat der Koeffizient Einfluss darauf, ob die Parabel schmaler oder breiter verläuft. Die Wahl des richtigen Koeffizienten hat hier wohl nicht funktioniert.

1 Kommentar
  1. Sehr sehr gutes Video, total verständlich, gut gemacht, alles Wissenswerte drin!

    Von Anjabier, vor 15 Tagen

Videos im Thema

Quadratische Funktionen: f(x)=a·x² (1 Videos)

zur Themenseite

f(x)=ax² – Einführung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video f(x)=ax² – Einführung kannst du es wiederholen und üben.

  • Vervollständige den Lückentext.

    Tipps

    Dieser Graph gehört zu der Funktionsgleichung $f(x)=-x^2$.

    Gestauchte Parabeln verlaufen breiter als die Normalparabel und gestreckte Parabeln schmaler.

    Lösung

    Parabeln vom Typ $f(x)=a\cdot x^2$ haben alle ihren Scheitelpunkt im Koordinatenursprung und sind symmetrisch zur $y$-Achse. Wir teilen sie in verschiedene Kategorien ein:

    Parabeln $f(x)=a\cdot x^2$ mit positivem Parameter $a$ liegen stets oberhalb der $x$-Achse und sind nach oben geöffnet.

    Die Normalparabel hat die Funktionsgleichung $f(x)=x^2$. Hier ist der Vorfaktor $a=1$. Sie liegt somit oberhalb der $x$-Achse und ist nach oben geöffnet.

    Eine gestauchte Parabel ist breiter als die Normalparabel. Für ihren Parameter $a$ gilt $0<a<1$, falls sie oberhalb der $x$-Achse liegt.

    Eine gestreckte Parabel hingegen ist schmaler als die Normalparabel. Liegt sie oberhalb der $x$-Achse, so gilt $a>1$ für den Parameter $a$.

    Bei einem negativen Parameter $a$ nennen wir eine Parabel $f(x)=a\cdot x^2$ an de $x$-Achse gespiegelt. Der Graph einer solchen Parabel liegt unterhalb der $x$-Achse und ist somit nach unten geöffnet. Für das Stauchen und Strecken gilt in diesem Fall:

    • Für Parameter $a$ mit ${-1}<a<0$ ist der Graph gestaucht, also breiter.
    • Für Parameter $a$ mit $a<{-1}$ liegt der Graph gestreckt, also schmaler vor.

  • Erstelle Wertetabellen zu den quadratischen Funktionen $f$ und $g$.

    Tipps

    Beim Quadrieren einer negativen Zahl wird diese positiv. Zum Bespiel ergibt sich $(-2)^2=4$.

    Wenn man eine negative Zahl, z.B. $-2$, für $x$ in eine Gleichung wie $f(x)=2x^2 \ $ einsetzt, so kann man zur Hilfe zunächst einmal Klammern um die $(-2)$ setzen, damit man nicht vergisst, dass sich das Quadrat auch auf das Vorzeichen bezieht.

    Wenn man den Term $2 \cdot (-2)^2$ ausrechnet, so muss man zunächst $-2$ quadrieren, also $(-2)^2=4$ und anschließend das Ergebnis mit $2$ multiplizieren, also $2 \cdot 4=8$.

    Lösung

    Wertetabelle für$~f(x)=2x^2$

    Setzt man $-2$ für $x$ ein, so erhält man $2 \cdot (-2)^2=2 \cdot 4=8$. Wir können also $8$ in die Tabelle eintragen.

    Setzt man $-1$ für $x$ ein, so erhält man $2 \cdot (-1)^2=2 \cdot 1=2$.

    Für $x=0$ erhält man für alle Funktionen der Form $f(x)=ax^2$ den Wert $0$. Ebenso für $2 \cdot 0^2=2 \cdot 0=0$.

    Setzt man $1$ für $x$ ein, so erhält man $2 \cdot 1^2=2 \cdot 1=2$.

    $~$

    Wertetabelle für$~g(x)=-x^2$

    Setzt man $-2$ für $x$ ein, so erhält man $(-1) \cdot (-2)^2=(-1) \cdot 4=-4$. Wir können also $-4$ in die Tabelle eintragen.

    Setzt man $-1$ für $x$ ein, so erhält man $(-1) \cdot (-1)^2=(-1) \cdot 1=-1$.

    Für $x=0$ erhält man wieder $(-1) \cdot (0)^2=(-1) \cdot 0=0$.

    Setzt man $1$ für $x$ ein, so erhält man $(-1) \cdot (1)^2=(-1) \cdot 1=-1$.

  • Gib wieder, welche quadratische Funktionsgleichung zu welcher Parabel gehört.

    Tipps

    Du betrachtest Funktionsgleichungen der Form $f(x)=ax^2$. Ist der Parameter $a$ negativ, so ist der zugehörige Funktionsgraph gegenüber der Normalparabel an der $x$-Achse gespiegelt.

    Für Graphen mit positivem Parameter $a$, die breiter an der $y$-Achse verlaufen als die Normalparabel, gilt $0<a<1$ .

    Lösung

    Normalparabel$~f(x)=x^2$

    Die Normalparabel, welche hier abgebildet ist, hat die Funktionsgleichung $f(x)=x^2$. Der Parameter ist hier $a=1$.

    Parabel$~f(x)=4x^2$

    Für Graphen, die oberhalb der $x$-Achse verlaufen, gilt $a>0$. Verlaufen diese zusätzlich schmaler als die Normalparabel mit der Funktionsgleichung $f(x)=x^2$, so ist der Graph in Richtung der $y$-Achse gestreckt. Für eine solche Funktion gilt $a>1$. Diese Eigenschaften treffen auf die Funktion mit der Funktionsgleichung $f(x)=4x^2$ zu.

    Parabel$~f(x)=0,5x^2$

    Verlaufen Parabeln oberhalb der $x$-Achse breiter als die Normalparabel mit der Funktionsgleichung $f(x)=x^2$, so ist der Graph in Richtung der $y$-Achse gestaucht. Für eine solche Funktion gilt $0<a<1$. Diese Eigenschaften treffen auf die Funktion mit der Funktionsgleichung $f(x)=0,5x^2$ zu.

    Parabel$~f(x)=-2x^2$

    Der Graph, der durch die Funktionsgleichung $f(x)=-2x^2$ beschrieben wird, ist gegenüber der Normalparabel an der $x$-Achse gespiegelt. Hier gilt ja auch $a<0$. Außerdem verläuft der Graph schmaler als die gespiegelte Normalparabel. Das liegt daran, dass mit $a=-2$ der Fall $a<-1$ vorliegt. Der Graph ist also in Richtung der $y$-Achse gestreckt.

  • Leite ab, welche Funktionsgleichung zu welchem Punkt im Koordinatensystem gehört.

    Tipps

    Schau dir ein Beispiel an. Wir betrachten den Punkt $P(2\vert -1)$:

    $ \begin{array}{lllll} & a \cdot 2^2 &=& -1 & \\ & 4 \cdot a &=& -1 & \vert :4\\ & a &=& -\frac 14 & \end{array}$

    Lösung

    Funktionsgleichung der Parabel durch $P_1(-1 \mid 2)$:

    Wir setzen den Punkt $P_1(-1 \mid 2)$ in die Funktionsgleichung $f(x)=ax^2$ ein und erhalten:

    $ \begin{array}{lllll} & a \cdot (-1)^2 &=& 2 & \\ & 1 \cdot a &=& 2 & \\ & a &=& 2 & \end{array}$

    Die Parabel zu der Funktionsgleichung $f(x)=2x^2$ ist die einzige Parabel der Form $f(x)=ax^2$, auf der der Punkt $P_1(-1 \mid 2)$ liegt.

    Funktionsgleichung der Parabel durch $P_2(1 \mid 0,5)$:

    Wir setzen den Punkt $P_2(1 \mid 0,5)$ in die Funktionsgleichung $f(x)=ax^2$ ein und erhalten:

    $ \begin{array}{lllll} & a \cdot 1^2 &=& 0,5 & \\ & 1 \cdot a &=& 0,5 & \\ & a &=& 0,5 & \end{array}$

    Die Parabel zu der Funktionsgleichung $f(x)=0,5x^2 $ ist die einzige Parabel der Form $f(x)=ax^2$, auf der der Punkt $P_2(1 \mid 0,5)$ liegt. Da $0 < a < 1$ gilt, ist die Parabel im Bezug auf die $y$-Achse gestaucht.

    Funktionsgleichung der Parabel durch $P_3(2 \mid -4)$:

    Wir setzen den Punkt $P_3(2 \mid -4)$ in die Funktionsgleichung $f(x)=ax^2$ ein und erhalten:

    $ \begin{array}{lllll} & a \cdot 2^2 &=& -4 & \\ & 4 \cdot a &=& -4 & \vert :4 \\ & a &=& -1 & \end{array}$

    Die Parabel zu der Funktionsgleichung $f(x)=-x^2$ ist die einzige Parabel der Form $f(x)=ax^2$, auf der der Punkt $P_3(2 \mid -4)$ liegt. Da $a<0$ gilt, ist die Parabel nach unten geöffnet.

  • Entscheide, welche quadratische Funktionsgleichung zu welcher Parabel gehört.

    Tipps

    $a <-1 \ $ bedeutet Streckung im Bezug zur $y$-Achse und Spiegelung an der $x$-Achse.

    $0<a<1 \ $ bedeutet, dass der Graph breiter als die Normalparabel verläuft.

    Lösung

    Bei $f_1$ ist $a>0$. Daher kommt hier nur der gelbe und grüne Graph in Frage, da diese nach oben geöffnet sind. Da hier $a=2,5$ ist, verläuft der Graph schmaler als die Normalparabel. Daher kommt hier nur der gelbe Graph in Frage.

    Bei $f_2$ ist $a>0$. Daher kommt hier auch nur der gelbe und grüne Graph in Frage, da diese nach oben geöffnet sind. Da hier $a=0,75$ ist, verläuft der Graph breiter als die Normalparabel. Daher kommt hier nur der grüne Graph in Frage.

    Für $f_3$ ist der Parameter $a<0$. Daher kommt hier nur der rote und blaue Graph in Frage, da diese nach unten geöffnet sind. Da hier $a=-0,1$ ist und damit der Fall $-1<a<0$ vorliegt, verläuft der Graph breiter als die gespiegelte Normalparabel. Daher kommt hier nur der rote Graph in Frage.

    Für $f_4$ ist der Parameter $a<0$. Daher kommt auch hier nur der rote und blaue Graph in Frage, da diese nach unten geöffnet sind. Da hier $a=-1,5$ ist und damit der Fall $a<-1$ vorliegt, verläuft der Graph schmaler als die gespiegelte Normalparabel. Daher kommt hier nur der blaue Graph in Frage.

  • Bestimme die Eigenschaften der gegebenen vier Parabeln.

    Tipps

    Die Parabel zur Funktionsgleichung $f(x)=0,1 \cdot x^2$ ist nach oben geöffnet und in Richtung der $y$-Achse gestaucht.

    Ist der Parameter $a$ negativ, so verläuft der Graph der Funktion $f(x)=ax^2$ unterhalb der $x$-Achse.

    Lösung

    Für seine anstehende Flugshow plant der Kunstflugpilot Yannis seine Flugbahnen. Weil parabelförmige Flugmanöver sehr beliebt sind, nimmt er in seine Show vier Flugbahnen der Form $f(x)=x^2+c$ auf. Eine quadratische Funktion dieser Form besitzt seinen Scheitelpunkt, also den tiefsten Punkt, bei $S(0\vert c)$. Demnach erhalten wir für Yannis’ Flugbahnen folgende Scheitelpunkte:

    Funktion: $~f(x)=x^2-8$

    Diese Funktion hat den Parameter $c=-8$ und somit den Scheitelpunkt $S(0\vert -8)$.

    Funktion: $~g(x)=\frac 14\left(4x^2+8\right)$

    Diese Funktion multiplizieren wir mit Hilfe des Distributivgesetzes zunächst aus:
    $g(x)=\frac 14\left(4x^2+8\right)=\frac 14\cdot{4x^2}+\frac 14\cdot8=x^2+2$.
    Somit hat diese Funktion den Parameter $c=2$ und den Scheitelpunkt $S(0\vert 2)$.

    Funktion: $~h(x)=-\frac 12\left(-2x^2+8\right)$

    Diese Funktion multiplizieren wir mit Hilfe des Distributivgesetzes zunächst aus:
    $h(x)=-\frac 12\left(-2x^2+8\right)=-\frac 12\cdot{-2x^2}+\left(-\frac 12\right)\cdot8=x^2+4$.
    Somit hat diese Funktion den Parameter $c=-4$ und den Scheitelpunkt $S(0\vert -4)$.

    Funktion: $~i(x)= x^2+8$

    Diese Funktion hat den Parameter $c=8$ und somit den Scheitelpunkt $S(0\vert 8)$.