Anwendung von Sinussatz und Cosinussatz
Der Sinussatz ist eine wichtige Formel, um Seitenlängen und Winkel in Dreiecken zu berechnen. Mit der Formel $\dfrac{a}{\sin(\alpha)}=\dfrac{b}{\sin(\beta)}=\dfrac{c}{\sin(\gamma)}$ kannst du fehlende Größen herausfinden. Interessiert? Das und vieles mehr erfährst du in diesem Beitrag!
- Sinussatz – Definition
- Cosinussatz – Definition
- Anwendung von Sinussatz und Cosinussatz
- Anwendung des Cosinussatzes
- Anwendung des Sinussatzes
- Ausblick – das lernst du nach Anwendung von Sinussatz und Cosinussatz
- Zusammenfassung von Sinus- und Cosinussatz
- Häufig gestellte Fragen zum Thema Sinussatz und Cosinussatz
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Anwendung von Sinussatz und Cosinussatz Übung
-
Bestimme den Winkel $\alpha$ mithilfe des Cosinussatzes für Piets Navigation.
TippsIsoliere zunächst $\cos(\alpha)$.
Verwende hierfür Äquivalenzumformungen.
Um bei gegebenem Cosinuswert den Winkel zu berechnen, muss der Cosinus umgekehrt werden.
Dies ist die $\cos^{-1}$ Taste auf deinem Taschenrechner.
LösungIn dieser brenzligen Situation kann Piet den Cosinussatz verwenden, da alle drei Seitenlängen bekannt sind. Da nach dem Winkel $\alpha$, dem Winkel in $A$, gesucht wird, kann man den folgenden Cosinussatz verwenden:
$a^2=b^2+c^2-2bc\cdot \cos(\alpha)$
Um $\alpha$ zu berechnen, muss man diese Gleichung so umformen, dass $\cos(\alpha)$ alleine steht:
$\begin{array}{rclll} a^2&=&b^2+c^2-2bc\cdot \cos(\alpha)&|&-b^2-c^2\\ a^2-b^2-c^2&=&-2bc\cdot \cos(\alpha)&|&:(-2bc)\\ \cos(\alpha)&=&\frac{a^2-b^2-c^2}{-2bc} \end{array}$
Geschafft! Nun können die bekannten Werte für die Seitenlängen $a$, $b$ und $c$ in dieser Gleichung eingesetzt werden:
$\cos(\alpha)=\frac{5,18^2-9^2-6^2}{-2~\cdot~9~\cdot~6}$
Zuletzt wird mithilfe des Arcuscosinus $\cos^{-1}$, umgekehrt, um $\alpha$ zu isolieren, und man erhält:
$\alpha=\cos^{-1}\left(\frac{5,18^2-9^2-6^2}{-2~\cdot~9~\cdot~6}\right)\approx33,4^\circ$
Mit dem Wissen, dass der Winkel $\alpha \approx33,4^\circ$ ist, kann Piet nun schnell losfahren, um den Leuchtturm zu reparieren.
-
Berechne den Winkel $\beta$ mit dem Sinussatz für Piets Fahrt zum Cap Capri.
TippsForme zunächst den Sinussatz so um, dass der Sinus des gesuchten Winkels alleine steht.
Setze dann die bekannten Werte in diese umgeformte Formel ein und löse mit dem Taschenrechner. Die Umkehrung des Sinus ist der Arcussinus $\sin^{-1}$.
Es werden nicht alle gegebenen Größen benötigt.
LösungWir starten mit der Gleichung
$\frac{a}{\sin(\alpha)}=\frac{b}{\sin(\beta)}$
Diese Gleichung gilt auch, wenn man auf beiden Seiten den Kehrwert bildet:
$\frac{\sin(\alpha)}a=\frac{\sin(\beta)}b$
Jetzt kannst du mit $b$ multiplizieren:
$\sin(\beta)=\frac{\sin(\alpha)}a\cdot b$
Nun kannst du die bekannten Werte einsetzen:
$\sin(\beta)=\frac{\sin(33,4^\circ)}{5,18}\cdot 9$
Zuletzt wird der Sinus mithilfe des Arcussinus, also $sin^{-1}$, umgekehrt, um $\beta$ zu isolieren:
$\beta=\sin^{-1}\left(\frac{\sin(33,4^\circ)}{5,18}\cdot 9\right)\approx 73^\circ$
Der Winkel $\beta$ ist also rund $ 73^\circ$ Grad groß. Nun kann Piet mit diesem Wissen sicher zum Leuchtturm fahren.
-
Bestimme die passende Gleichung mithilfe des Cosinussatzes.
TippsVielleicht hilft es dir, wenn du zuerst den Cosinussatz aufschreibst, der den Winkel $\alpha$ bei $A$ beinhaltet.
Beschrifte die Seiten mit den Kleinbuchstaben der Punkte, denen sie gegenüberliegen.
LösungIn jedem der Beispiele wird der folgende Cosinussatz verwendet:
$a^2=b^2+c^2-2bc\cdot \cos(\alpha)$.
Da jedes Mal der Winkel $\alpha$ bestimmt werden soll, wird diese Formel zunächst nach $\cos(\alpha)$ umgeformt:
$\begin{array}{rclll} a^2&=&b^2+c^2-2bc\cdot \cos(\alpha)&|&-b^2-c^2\\ a^2-b^2-c^2&=&-2bc\cdot \cos(\alpha)&|&:(-2bc)\\ \cos(\alpha)&=&\frac{a^2-b^2-c^2}{-2bc} \end{array}$
In diese umgeformte Gleichung können nun die bekannten Größen eingesetzt werden:
Dreieck mit den Seitenlängen $a=5,18$, $b=9$ und $c=6$:
$\quad~~\alpha=\cos^{-1}\left(\frac{5,18^2-9^2-6^2}{-2~\cdot~ 9~\cdot ~6}\right)\approx33,4^\circ$
Dreieck mit den Seitenlängen $a=9$, $b=8$ und $c=7$:
$\quad~~\alpha=\cos^{-1}\left(\frac{9^2-8^2-7^2}{-2~\cdot~8~\cdot ~7}\right)\approx 73,4^\circ$
Dreieck mit den Seitenlängen $a=2$, $b=3$ und $c=4$:
$\quad~~\alpha=\cos^{-1}\left(\frac{2^2-3^2-4^2}{-2~\cdot~ 3~\cdot~ 4}\right)\approx 29^\circ$
Dreieck mit den Seitenlängen $a=7$, $b=8$ und $c=9$:
$\quad~~\alpha=\cos^{-1}\left(\frac{7^2-8^2-9^2}{-2~\cdot~ 8~\cdot~ 9}\right)\approx 48,2^\circ$
-
Finde den Winkel, den Piet braucht, um zur Insel von Nils zu gelangen.
TippsÜberlege dir, wie du den Cosinussatz verwenden kannst, um den gesuchten Winkel zu berechnen.
Erinnere dich: Die Seiten benennst du im Dreieck immer genau so, wie den gegenüberliegenden Punkt, allerdings in Kleinbuchstaben.
Beim Cosinussatz kannst du die Variablen für die Seiten $a$, $b$ und $c$ sowie die zugehörigen Winkel $\alpha$, $\beta$ und $\gamma$ auch gegen andere Variablen austauschen, solange du das konsequent an allen Stellen machst, zum Beispiel alle $a$ gegen $d$ und zudem auch Winkel $\alpha$ gegen $\delta$ austauschst.
LösungPiet muss den Winkel in $A$, also $\alpha$, herausfinden.
Bekannt sind die Seitenlängen $a=4$, $c=6,5$ und $d=9$.
Mit diesen Größen lautet der Cosinussatz dann
$a^2=c^2+d^2-2cd\cdot \cos(\alpha)$.
Diese Gleichung wird nach $\cos(\alpha)$ umgeformt:
$\begin{array}{rclll} a^2&=&c^2+d^2-2cd\cdot \cos(\alpha)&|&-c^2-d^2\\ a^2-c^2-d^2&=&-2cd\cdot \cos(\alpha)&|&:(-2dc)\\ \cos(\alpha)&=&\frac{a^2-c^2-d^2}{-2cd} \end{array}$
Nun können die bekannten Größen in dieser Formel eingesetzt werden:
$\cos(\alpha)=\frac{4^2-6,5^2-9^2}{-2~\cdot~ 6,5~\cdot~ 9}$.
Um den Winkel $\alpha$ zu erhalten, wird der Cosinus umgekehrt:
$\alpha=\cos^{-1}\left(\frac{4^2-6,5^2-9^2}{-2~\cdot ~6,5~\cdot ~9}\right)\approx 23,6^\circ$.
-
Prüfe, welche Formeln zum Cosinussatz fehlerfrei aufgeschrieben wurden.
TippsAchte auf die Vorzeichen.
Zwei Gleichungen sind korrekt.
Der erste Teil der Formel sieht so ähnlich aus wie der Satz des Pythagoras; und davon wird etwas subtrahiert:
Das Doppelte des Produktes der beiden Seiten, deren Quadrate addiert werden, multipliziert mit dem Cosinus des gegenüberliegenden Winkels der Seite, die auf der linken Seite der Gleichung steht.
LösungDer Cosinussatz besteht eigentlich aus drei Formeln. Bei jeder dieser Formeln steht das Quadrat einer der drei Seiten auf der linken Seite der Gleichung. Der Cosinus des dieser Seite gegenüberliegenden Winkels taucht auf der rechten Seite auf.
- $a^2=b^2+c^2-2bc\cdot \cos(\alpha)$
- $b^2=a^2+c^2-2ac\cdot \cos(\beta)$
- $c^2=a^2+b^2-2ab\cdot \cos(\gamma)$
Schau dir bei der ersten Formel die linke Seite sowie die beiden Summanden auf der rechten Seite an: Das sieht aus wie der Satz des Pythagoras, $a^2=b^2+c^2$. Davon wird etwas subtrahiert: Das Doppelte des Produktes der beiden Seiten, deren Quadrate addiert werden, multipliziert mit dem Cosinus des gegenüberliegenden Winkels der Seite, die auf der linken Seite der Gleichung steht.
Bei den obigen Auswahlmöglichkeiten sind also nur die 1. und 3. richtig.
-
Ermittle die Winkel, welche potenzielle neue Positionen für Leuchttürme darstellen.
TippsSchaue dir den Cosinus- sowie den Sinussatz nochmal an.
In jedem der drei Dreiecke kennst du die Längen der drei Seiten.
Achte auf die Vorzeichen.
Im Sinussatz kommen zwei Winkel und zwei Seiten vor.
LösungDa in jedem der Dreiecke drei Seiten bekannt sind, muss Piet jeweils den Cosinussatz verwenden. Dieser wird dann nach dem gesuchten Winkel umgeformt und die bekannten Größen können in der so erhaltenen Formel eingesetzt werden:
Die Formel $a^2=b^2+c^2-2bc\cdot \cos(\alpha)$ kann wie folgt umgeformt werden
$\begin{array}{rclll} a^2&=&b^2+c^2-2bc\cdot \cos(\alpha)&|&-b^2-c^2\\ a^2-b^2-c^2&=&-2bc\cdot \cos(\alpha)&|&:(-2bc)\\ \cos(\alpha)&=&\frac{a^2-b^2-c^2}{-2bc}&|&\cos^{-1}\\ \alpha&=&\cos^{-1}\left(\frac{a^2-b^2-c^2}{-2bc}\right)\end{array}$
Ebenso kann
$b^2=a^2+c^2-2ac\cdot\cos(\beta)$ umgeformt werden zu
$\beta=\cos^{-1}\left(\frac{b^2-a^2-c^2}{-2ac}\right)$
und $c^2=a^2+b^2-2ab\cdot \cos(\gamma)$ zu
$\gamma=\cos^{-1}\left(\frac{c^2-a^2-b^2}{-2ab}\right)$
Nun bleibt nur noch übrig, in jedem der Dreiecke zu entscheiden, welche dieser drei Formeln man verwenden kann (von oben nach unten):
$\beta=\cos^{-1}\left(\frac{12^2-11^2-8^2}{-2~\cdot ~11~\cdot ~8}\right)\approx76,5^\circ$
$\gamma=\cos^{-1}\left(\frac{5^2-7^2-10^2}{-2~\cdot~ 7~\cdot~ 10}\right)\approx27,7^\circ$
$\alpha=\cos^{-1}\left(\frac{20^2-13^2-11^2}{-2~\cdot~ 13~\cdot~ 11}\right)\approx112,6^\circ$
8.988
sofaheld-Level
6.601
vorgefertigte
Vokabeln
7.715
Lernvideos
37.358
Übungen
33.686
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebeziehungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Was Ist Eine Viertelstunde
- Prisma
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Satz Des Pythagoras
- Dreieck Grundschule
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Zahlen In Worten Schreiben
- Meter
- Orthogonalität
- Schriftlich Multiplizieren
- Brüche gleichnamig machen
- Brüche Multiplizieren
- Brüche multiplizieren – Übungen
- Potenzgesetze
- Distributivgesetz
- Bruchgleichungen lösen – Übungen
- Flächeninhalt Dreieck
- Rationale Zahlen