Aldehydnachweise – Fehling-Probe und Tollens-Probe
Hier erfährst du, wie man Aldehyde mit Hilfe der Fehling- und Tollens-Probe nachweisen kann. Diese chemischen Verfahren zeigen das Vorhandensein von Aldehyden in einer Lösung an. Interessiert? Das und vieles mehr findest du im folgenden Text!
- Fehling-Probe und Tollens-Probe – Aldehydnachweise in der Chemie
- Aldehydnachweis mit der Fehling‑Probe
- Aldehydnachweis mit der Tollens‑Probe
- Anwendung und Grenzen der Aldehydnachweise
- Ausblick – das lernst du nach Aldehydnachweise – Fehling-Probe und Tollens-Probe
- Zusammenfassung der Fehling‑Probe und Tollens‑Probe
- Häufig gestellte Fragen zum Thema Fehling‑Probe und Tollens‑Probe
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Alkanone und Ketone – Einführung
Alkanone und Ketone – Einführung (Expertenwissen)
Aldehyde
Aldehyde und Ketone – Herstellung und Eigenschaften
Aldehyde und Ketone - Addition primärer Amine
Aldehyde – Reaktionen
Aldehyd – Nachweise
Aldehydnachweise – Fehling-Probe und Tollens-Probe
Eigenschaften und Verwendung von Formaldehyd
Bau und Reaktionsverhalten der Carbonylgruppe
Ketone – Reaktionen
Ketone – Reaktionen (Expertenwissen)
Aceton
Keto-Enol-Tautomerie
Mechanismus der Aldolreaktion
Aldol-Kondensation
Chemie der Düfte
Aldehydnachweise – Fehling-Probe und Tollens-Probe Übung
-
Erkläre den Nachweis mit Fehlingscher Lösung.
TippsDie ablaufende Reaktion ist eine Redoxreaktion.
LösungWenn die beiden Fehling-Lösungen miteinander reagieren, dann entsteht ein dunkelblauer Kupferkomplex. Ist nun eine Probe im Reagenzglas, die eine Aldehydgruppe enthält, dann reduziert diese das Kupfer(II)-Ion zu Kupfer(I) und wird selbst zur Carbonsäure oxidiert. Sichtbar wird das an einem ziegelroten Niederschlag aus Kupfer(I)oxid nach dem Erhitzen.
-
Erkläre, warum sich Ketone bei den Aldehydnachweisen nicht oxidieren lassen.
TippsWorin unterscheidet sich die Struktur von Ketonen und Aldehyden?
LösungKetone und Aldehyde besitzen beide eine Carbonylgruppe. Allerdings unterscheidet sich deren Position. Während Aldehyde eine endständige Carbonylgruppe besitzen, also eine Carbonylgruppe am Ende des Moleküls, besitzen Ketone eine mittelständige Carbonylgruppe (siehe Abbildung). Die mittelständige Carbonylgruppe lässt sich nur unter viel härteren Bedingungen oxidieren. Diese Bedingungen werden in den Aldehydnachweisen nicht geschaffen, weshalb Ketone keinen positiven Aldehydnachweis vortäuschen können.
-
Ermittle die Verbindungen, die einen positiven Aldehydnachweis zeigen.
TippsDer Aldehydnachweis funktioniert nur bei endständiger Carbonylgruppe.
LösungEinen positiven Aldehydnachweis kannst du bei Verbindungen mit Aldehydgruppe (-CHO) beobachten (siehe Abbildung). Bei den gegebenen Beispielen trifft das auf die erste Verbindung zu, Ethanal, und auf die fünfte Verbindung, Benzaldehyd. Das Prinzip hinter den Nachweisreaktionen ist die reduzierende Wirkung von Aldehyden. Die Aldehydgruppe wird also bei den Versuchen oxidiert. Unter den Auswahlmöglichkeiten findest du neben den Aldehyden Carbonsäuren (-COOH). Hier ist die Gruppe bereits bis zur höchsten Oxidationsstufe oxidiert. Sie können also keinen positiven Aldehydnachweis erzeugen. Alkine und Ketone lassen sich zwar oxidieren, aber nicht unter den gegebenen Bedingungen, sie können also auch keinen positiven Aldehydnachweis anzeigen.
-
Bestimme anhand der funktionellen Gruppe, um welche Stoffklasse es sich handelt.
TippsAlkohole werden zu Aldehyden oder Ketonen oxidiert. Aus einem Aldehyd entsteht durch Oxidation eine Carbonsäure.
LösungDie verschiedenen Stoffklassen in der organischen Chemie lassen sich unter anderem gut an ihren funktionellen Gruppen erkennen. Alkohole lassen sich zum Beispiel gut an der OH-Gruppe erkennen. Werden Alkohole nun oxidiert, entstehen daraus, je nach Position der OH-Gruppe, Aldehyde oder Ketone. Erkennen lässt sich das gut am Anstieg der Oxidationszahl des Kohlenstoffatoms, welches an die funktionelle Gruppe gebunden ist. Die funktionelle Gruppe einer der beiden Stoffklassen ist eine Carbonylgruppe, also ein Kohlenstoffatom mit Doppelbindung zum Sauerstoff. Beim Aldehyd befindet sich diese Carbonylgruppe am Ende des Moleküls und bei Ketonen in der Mitte. Wird das Aldehyd dann noch weiter oxidiert, entsteht eine Carbonsäure mit einer Carboxygruppe -COOH.
-
Nenne Nachweise, mit denen Aldehyde nachgewiesen werden können.
TippsIn den Reaktionen werden Aldehyde zu Carbonsäuren oxidiert.
LösungUm Aldehyde nachweisen zu können, kann der Nachweis mit Fehlingscher Lösung erfolgen oder mit der Tollens-Probe, In beiden Fällen wird das Aldehyd zu einer Carbonsäure oxidiert. Bei Fehlingscher Lösung entsteht so rotes Kupfer(I)oxid und bei der Tollens-Probe ein Spiegel aus elementarem Silber.
-
Bestimme die Reaktionsprodukte, die durch Oxidation folgender Alkohole entstehen.
TippsSieh dir an, an welcher Stelle im Alkohol die OH-Gruppe steht.
Primäre Alkohole werden zu Aldehyden oxidiert, sekundäre Alkohole zu Ketonen.
Die systematischen Namen von Aldehyden enden auf -al.
LösungBei der Oxidation von Alkoholen können sowohl Aldehyde als auch Ketone entstehen. Abhängig ist das von der Position der OH-Gruppe. Wenn sie, wie bei primären Alkoholen, am Ende ist, dann entstehen Aldehyde, wenn sie sich in der Mitte befindet, entstehen Ketone. Aus Ethanol und Propanol entsteht also ein Aldehyd. Systematisch enden die Namen von Aldehyden auf -al. Aus Ethanol wird also Ethanal und aus Propanol wird Propanal. Beim iso-Propanol befindet sich die OH-Gruppe am mittleren C-Atom. Es entsteht also ein Keton. Systematisch hieße dieses Propanon. Propanon ist das kleinste Keton und vielen unter dem Trivialnamen Aceton bekannt.
8.988
sofaheld-Level
6.601
vorgefertigte
Vokabeln
7.715
Lernvideos
37.358
Übungen
33.686
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Chemie
- Periodensystem
- Ammoniak Verwendung
- Entropie
- Salzsäure Steckbrief
- Kupfer
- Stickstoff
- Glucose Und Fructose
- Salpetersäure
- Redoxreaktion
- Schwefelsäure
- Natronlauge
- Graphit
- Legierungen
- Dipol
- Molare Masse, Stoffmenge
- Sauerstoff
- Elektrolyse
- Bor
- Alkane
- Verbrennung Alkane
- Chlor
- Elektronegativität
- Tenside
- Toluol, Toluol Herstellung
- Wasserstoffbrückenbindung
- Fraktionierte Destillation Von Erdöl
- Carbonsäure
- Ester
- Harnstoff, Kohlensäure
- Reaktionsgleichung Aufstellen
- Redoxreaktion Übungen
- Cellulose Und Stärke Chemie
- Süßwasser und Salzwasser
- Katalysator
- Ether
- Primärer Alkohol, Sekundärer Alkohol, Tertiärer Alkohol
- Van-der-Waals-Kräfte
- Oktettregel
- Kohlenstoffdioxid, Kohlenstoffmonoxid, Oxide
- Alfred Nobel Und Die Dynamit Entdeckung
- Wassermolekül
- Ionenbindung
- Phosphor
- Saccharose Und Maltose
- Aldehyde
- Kohlenwasserstoff
- Kovalente Bindungen
- Wasserhärte
- Peptidbindung
- Fermentation