30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Translation 04:13 min

Textversion des Videos

Transkript Translation

Hallo, in diesem Film erkläre ich dir die Translation. Das ist der zweite Schritt der Protein-Biosynthese, die aus Transkription und Translation besteht. Um diesen Film zu verstehen, braucht ihr Vorwissen zu dem Thema Transkription. Hier seht ihr ein Ribosom, hier findet die Translation statt. Ein Ribosom hat drei Bindungsstellen. Dies ist die A-Stelle, und von links nach rechts die P-Stelle und die E-Stelle. Der Vorgang der Translation erfolgt im Zellplasma. Wie funktioniert aber die Translation? Ursprünglich stammt die m-RNA aus dem Zellkern. Das Ribosom setzt sich nun am Startcoder AUG der m-RNA zusammen. Eine t-RNA mit einer Aminosäure bindet an die P-Stelle des Ribosoms. Die Basen-Triplets der m-RNA geben vor, welches t-RNA Molekül mit spezifischer Aminosäure andockt. Ein Basen-Triplet der m-RNA codiert für eine Aminosäure. Das bedeutet, dass die Sequenz der Aminosäurekette, welche später entsteht, sich somit aus der Sequenz der m-RNA ergibt. Dies ist ein t-RNA Molekül, und dies besitzt eine gebundene spezifische Aminosäure. Das nennt man ein Anticodon. Mit diesem Anticodon bindet sie komplementär an ein Basentriplet. t-RNA heißt ausgeschrieben Transfer-RNA. Ein t-RNA Molekül mit spezifischer Aminosäure dockt nun an der A-Stelle an. Das Ribosom rückt danach um ein Triplet an der m-RNA weiter. Die erste t-RNA befindet sich jetzt an der E-Stelle. Unter Energieaufwand wird die neue Aminosäure mit der alten an der P-Stelle verknüpft. Die erste t-RNA verlässt das Ribosom. An der neu frei gewordenen A-Stelle dockt ein neues t-RNA Molekül mit spezifischer Aminosäure an. Das Ribosom rückt erneut um ein Triplet weiter. Der soeben beschrieben Vorgang wiederholt sich. Es werden immer mehr Aminosäuren verknüpft, bis das Ribosom auf das Stoppcodon UAG trifft. Das Stoppcodon zeichnet sich dadurch aus, dass es dafür kein t-RNA Molekül mit spezifischer Aminosäure gibt. Der m-RNA- und Ribosomkomplex zerfällt. Erhalten bleibt nur die gebildete Aminosäurekette. Daraus entstehen Proteine. Hier werden beispielhaft fünf Aminosäuren verknüpft. In Wirklichkeit müssen aber mindestens hundert Aminosäuren verknüpft werden, damit man von einem Protein reden kann. Die Translation ist abgeschlossen. Aber wozu ist die Translation da? Die Protein-Biosynthese ist ein zentraler Prozess in jeder Zelle, denn die Proteine sind für die Struktur und Funktion einer jeden Zelle verantwortlich. Sie wirken zum Beispiel als Enzyme, Hormone, Bausteine für Zellmembran, Gewebe und Muskelfasern. In diesem Film habe ich dir die Translation, den zweiten Schritt der Protein-Biosynthese, erklärt. Du hast gelernt, wie in diesem Prozess die Basensequenz der m-RNA in die Aminosäure-Sequenz von Proteinen übersetzt wird. Bis bald!

8 Kommentare
  1. beginnt es nicht an der A-Stelle?

    Von Nfaresin, vor 4 Monaten
  2. Ich finde das Es ausführlich erklärt wird und Mann alles mitbekommr

    Von Maxmarius Spielberger 1, vor etwa 3 Jahren
  3. Hallo Nina,
    sie befinden sich an der kleinen Untereinheit.
    LG

    Von Serpil Kilic, vor etwa 3 Jahren
  4. Mich würde interessieren, wo sich die A-, P-, und E-Stellen am Ribosom befinden, sind sie Teil der kleinen 40S Untereinheit oder der großen? Vielen Dank im Voraus!

    Von Ni K., vor etwa 3 Jahren
  5. Hallo :)

    Bei der Translation ist das etwas komplizierter. Die Wanderungsrichtung des Ribosoms entlang der mRNA ist von 5'-->3'.
    Die 3 Regionen im Ribosom A(Eingang), P(Transfer), E(Ausgang) sind demzufolge aber in 3'-->5'.

    In unserer Abiturvorlage sind die Zusammenhänge nochmal übersichtlich gezeigt
    http://magazin.sofatutor.com/schueler/2015/01/29/abiturvorbereitung-abitur-biologie-2015-die-themen-auf-einem-blick/

    Von Marcel Schenke, vor mehr als 4 Jahren
  1. welcher lese Richtung z. B. (3´ nach 5´) wird bei der Translation genommen?

    Von Fidan.Brand, vor mehr als 4 Jahren
  2. Nice, mercie gutes video.

    Von Susanne Honnef, vor mehr als 4 Jahren
  3. schön :)

    Von Georg Wasylow, vor fast 6 Jahren
Mehr Kommentare

Videos im Thema

DNA und Molekulargenetik (30 Videos)

zur Themenseite

Translation Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Translation kannst du es wiederholen und üben.

  • Beschreibe die Translation.

    Tipps

    Jede t-RNA besitzt ein Anticodon, das für eine bestimmte Aminosäure spezifisch ist.

    P-Stelle ist die Abkürzung für Peptidylstelle. „Peptid“ ist ein Begriff für eine Kette aus Aminosäuren.

    Lösung

    Jede t-RNA bindet spezifisch mit ihrem Anticodon an die mRNA. Dieses Anticodon ist komplementär zur Basensequenz der mRNA. t-RNAs tragen die spezifische Aminosäure und bringen sie zum Ribosom.

    Am Ribosom besetzt die neue t-RNA zuerst die A-Stelle. Wenn das Ribsom die mRNA weiter abliest, rückt die t-RNA an die P-Stelle. Dort findet die Verknüpfung der Aminosäuren statt. Ist die Aminosäure mit der Kette verknüpft, rückt die t-RNA weiter an die E-Stelle, von wo sie den Komplex aus Ribosom und mRNA verlässt.

    An Stoppcodons bindet keine t-RNA, da es für diese Basentripletts keine t-RNA mit einem passenden Anticodon gibt. Der Komplex aus t-RNA und Ribosom zerfällt. Als Endrodukt der Translation bleibt die Aminosäurenkette.

  • Bringe die Schritte der Translation in die richtige Reihenfolge.

    Tipps

    Das „E“ der E-Stelle steht für das englische Wort „Exit“ (=Ausgang).

    Lösung

    Zu Beginn der Translation setzt das Ribosom am Startcodon der mRNA an. Die für dieses Basentriplett spezifische t-RNA bindet die mRNA an der P-Stelle des Ribosoms. Die darauffolgende t-RNA bindet an der A-Stelle des Ribosoms. Sind zwei t-RNAs gebunden, rückt das Ribosom um ein Basentriplett weiter, so dass nun die erste t-RNA an der E-Stelle und die zweite an der P-Stelle sitzt. Bei diesem Vorgang findet die Verknüpfung der zwei Aminosäuren statt. Die erste t-RNA kann daraufhin den Ribosomkomplex an der E-Stelle verlassen. Eine neue t-RNA bindet nun wieder an die A-Stelle und der Prozess beginnt von Neuem.

  • Beschreibe den Prozess der Translation.

    Tipps

    Überlege, wie viel Basen für je eine Aminosäure codieren.

    Lösung

    Im Anschluss an die Transkription, bei der die DNA in mRNA umgeschrieben wird, erfolgt die Translation. Beide Prozesse sind Teil der Proteinbiosynthese. Die mRNA verlässt den Zellkern und gelangt in das Cytoplasma. Dort bildet sich ein Komplex aus der mRNA und Ribosomen. Ribosome lesen die Basensequenz der mRNA ab. Je ein Triplett codiert für eine Aminosäure. Die tRNAs bringen die Aminosäuren zum Ribosom, wo sie miteinander verknüpft werden. Jede t-RNA besitzt ein spezifisches Anticodon, mit dem sie an die mRNA bindet. Am Stoppcodon zerfällt der Komplex aus Ribosom und mRNA. Das Endprodukt der Translation ist ein Protein.

  • Beschreibe, welche Auswirkungen die Mutationen auf das Protein haben.

    Tipps

    Übersetze als Erstes die Basensequenz in die Aminosäuresequenz. Nummeriere auch die Position der Basen.

    Zum Beispiel:
    CUU GUC
    123 456

    Fallen Basen weg, kommt es meist zu einer Verschiebung des Leserasters, da diese immer in Tripletts abgelesen werden.

    Überlege, was passiert, wenn ein ganzes Triplett wegfällt.

    Lösung

    Die mRNA hat folgende Sequenz: ...CUU GUC ACA ACG CGG UGC CAG ACA AGG GAG AUA GUU...

    Nummeriere als Erstes alle Basen durch, um ihre Positionen zu kennen.

    Beispiel: CUU C=Position1, U= Position 2, U= Position 3

    Übersetze dann die Tripletts mit Hilfe der Code-Sonne in die entsprechenden Aminosäuren, für die sie codieren.

    Beispiel: CUU codiert für Leucin (Leu)

    Es sind folgende Mutationen erwähnt:

    1) Die Basen an den Positionen 7, 8 und 9 fallen weg. In diesem Fall bleibt das Leseraster erhalten, da genau drei Basen, also ein Triplett, wegfallen. Dies wäre auch bei 6, 9 oder anderen durch drei teilbaren Zahlen der Fall. In diesem Fall fällt eine Aminosäure weg. Wenn diese Aminosäure eine wichtige Funktion im Protein einnimmt, wird das Protein fehlerhaft sein. Handelt es sich aber um eine eher unbedeutende Aminosäure, bleibt das Protein funktionstüchtig.

    2) UGC wird zu UGA: Anstelle der Aminosäure Cystein entsteht ein Stoppcodon. Hier bricht die Translation ab, das Protein wird zu kurz.

    3) AGG wird zu CGG: Beide Tripletts codieren für Arginin (Arg). Es entsteht kein Fehler. Das Protein bleibt funktionsfähig.

    4) Eine Base fällt weg. Dadurch kommt es zu einer Verschiebung des Leserasters. Die folgenden Basen werden in falschen Tripletts abgelesen. Es entstehen falsche Aminosäuren. Das Protein ist wahrscheinlich nicht funkionsfähig.

  • Entscheide, ob die Begriffe zur Transkription oder zur Translation gehören.

    Tipps

    Überlege, wo die beiden Prozesse ablaufen.

    Bei beiden Prozessen gibt es jeweils ein Endprodukt.

    Lösung

    Bei der Transkription wird der codogene Strang der DNA in mRNA umgeschrieben. Das Enzym, das die DNA abliest und gleichzeitig die mRNA synthetisiert, heißt RNA-Polymerase. Ihr Startpunkt ist eine spezifische Sequenz der DNA, der sogenannte Promotor. Die Transkription findet im Zellkern statt.

    Bei der Translation wird der Code der mRNA in ein Protein übersetzt. Ein Ribosom erkennt das Startcodon der mRNA und bildet mit ihr einen Komplex. Je ein Basentriplett codiert für eine Aminosäure. Die Aminosäuren werden von den t-RNAs zum Ribosomkomplex transportiert. Sie binden spezifisch mit ihrem Anticodon an die mRNA. Die Aminosäuren werden an der P-Stelle des Ribosoms miteinander verknüpft. Am Stoppcodon zerfällt der Komplex. Die Translation findet im Cytoplasma statt.

  • Übersetze den mRNA-Strang mit Hilfe der Code-Sonne in eine Aminosäurenkette.

    Tipps

    Je drei Basen, ein sogenanntes Basentriplett, codieren für eine Aminosäure. Um ein Triplett in eine Aminosäure zu übersetzen, beginne im Kern der Code-Sonne und arbeite dich nach außen vor.

    Lösung

    Wie Du siehst, bildet jede Base A, G, U und C ein Viertel der Code-Sonne. Außerdem besteht sie aus drei bunten Kreisen und einem ganz außen liegenden weißen Kreis. Innerhalb der Code-Sonne arbeitest Du von außen nach innen.

    Um herauszufinden, für welche Aminosäure ein Basentriplett codiert, gehst Du folgendermaßen vor:

    • Suche die erste Base im innersten Kreis der Code-Sonne. Das ist dein Ausgangspunkt.
    • Die zweite Base deines Tripletts findest Du im mittleren Kreis.
    • Die dritte Base befindet sich im äußeren, bunten Kreis.
    • Im weißen Kreis findest Du nun die entsprechende Aminosäure.
    Du kannst erkennen, dass die letzte Postion in einem Basentriplett oft flexibel ist, um die gleiche Aminosäure zu codieren. So liefert sowohl das Triplett UUA als auch das Triplett UUG z.B. die gleiche Aminosäure Leucin.