30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Genetischer Code – Eigenschaften und Bedeutung 06:02 min

Textversion des Videos

Transkript Genetischer Code – Eigenschaften und Bedeutung

Hallo! Ein Bakterium und ein Kirschbaum haben mehr gemeinsam, als du auf den ersten Blick vermuten würdest. Denn alle Lebewesen von den kleinsten Zellen bis zu den komplexesten, vielzelligen Organismen haben eines gemeinsam. Ihre Erbinformation ist bis auf wenige Ausnahmen auf die gleiche Weise verschlüsselt. Diese Verschlüsselung nennt man auch genetischer Code und diesen möchte ich dir jetzt erklären. Dir ist sicher bekannt, dass die DNA zunächst in RNA transkribiert und dann in ein Protein translatiert wird. Die Proteine erfüllen dann vielfältige Aufgaben in jedem Organismus. Aber wie genau geht das, wenn doch die DNA aus nur vier verschiedenen Nukleotiden und ein Protein aus vielen Aminosäuren besteht? Wie kann in einer Abfolge von vier verschiedenen Nukleotiden die Reihenfolge von 20 Aminosäuren verschlüsselt sein? Wenn jedes Nukleotid für eine Aminosäure stünde, könnten in der DNA nur vier Aminosäuren verschlüsselt sein. Bei Zweierkombinationen der Nukleotiden, wie zum Beispiel G-C oder A-G, ergeben sich vier hoch zwei, also 16 mögliche Aminosäuren. Erst Dreierkombinationen in der DNA wie A-G-A oder T-C-G ergeben vier hoch drei, also 64 mögliche Aminosäuren. Und tatsächlich hat man herausgefunden, dass jeweils drei Nukleotide der DNA, sogenannte Codogene, beziehungsweise in der mRNA, die Codons oder Tripletts, einer Aminosäure im Protein entsprechen. Die Gesamtheit aller Codons nennen wir den genetischen Code. Die 64 möglichen Codons der mRNA siehst du in dieser Code-Sonne. Du findest hier die Nukleotide G, U, A und C in allen möglichen Dreierkombinationen. Du siehst hier auch, welchen Aminosäuren die Codons entsprechen. Da nur 20 Aminosäuren vom Menschen hergestellt werden, gibt es natürlich viel mehr mögliche Codons als Aminosäuren. Daher wird die Mehrzahl der Aminosäuren durch mehrere Codons beschrieben. Damit hast du soeben auch schon eine Besonderheit des genetischen Codes kennengelernt. Dadurch, dass eine Aminosäure durch mehrere Codons beschrieben ist, kann man aus einer Aminosäuresequenz nicht auf die DNA-Sequenz zurückschließen. Der genetische Code ist degeneriert oder redundant. Ist dir aufgefallen, dass eine Aminosäuren oft schon durch die ersten zwei Nukleotide im Codon festgelegt wird? Das findest du zum Beispiel bei der Aminosäure Prolin, denn die Nukleotide für Prolin beginnen immer mit C-C. Das dritte Nukleotid im Codon kann G, A, C oder U sein. Zudem hast du zu Beginn schon gehört, dass der genetische Code bis auf wenige Ausnahmen allen Organismen gemeinsam ist. Und zwar gilt das für die einfachsten Organismen wie Bakterien oder Viren, bis hin zu den komplexen Organismen wie den Landpflanzen oder Tieren. Der genetische Code ist also auch universell. Außerdem ist der genetische Code nicht überlappend, sodass jedes Nukleotid in der DNA nur in einem Codon der mRNA auftaucht und damit nur für die Codierung einer Aminosäure verwendet wird. Bei einem überlappenden Code würde eine Base in zwei oder sogar drei Codons genutzt. Zudem ist der Code kommafrei. Es gibt also keine Zeichen, die auf den Anfang oder das Ende eines Codons hinweisen würden. Wie aber wird festgelegt, wo ein Protein beginnt und wo es endet? Das wird durch besondere Codons bestimmt, nämlich durch Start- und Stoppcodons. Die Sequenz des Startcodons ist A-U-G und es kodiert gleichzeitig für die Aminosäure Formyl-Methionin. Stoppcodons gibt es drei: U-A-A, U-A-G und U-G-A. Sie kodieren für keine Aminosäure, sondern bedeuten ausschließlich, dass ein Kettenabbruch bei der Proteinsynthese am Ribosom stattfindet. Die Nukleotidsequenz von einem Start- zu einem Stoppcodon heißt auch offenes Leseraster oder Open Reading Frame, kurz ORF. Taucht die Sequenz des A-U-G Startcodons innerhalb eines ORF auf, wird einfach die Aminosäure Formyl-Methionin in das Protein eingebaut. Du hast in diesem Video, dass Bakterien, Pflanzen und ebenso der Mensch eines gemeinsam haben. Nämlich die Verschlüsselung der Erbinformationen, den genetischen Code. Der genetische Code ist aber nicht nur universell, sondern degeneriert, nicht überlappend und kommafrei. Spezielle Codons, die Start- und Stoppcodons, legen fest, wo ein Protein beginnt und endet. Tschüss.

11 Kommentare
  1. Hallo Nicki,
    um die Aufgabe zu lösen, reicht es zu wissen, welches die komplementären Basen sind. Anschließend musst du die Base Thymin durch die Base Uracil ersetzen. Die Tipps für die Aufgabe helfen dir beim Lösen der Aufgabe. Wenn du noch weitere Fragen hast, kannst du sie gerne stellen.
    Liebe Grüße,
    deine Biologie-Redaktion

    Von Serpil Kilic, vor mehr als 2 Jahren
  2. Woher weiss ich denn wie man von der DNA in die RNA übersetzt? Soll man bei Übung 3 machen, kommt aber nicht im Video vor

    Von Nicki Tt, vor mehr als 2 Jahren
  3. Top !

    Von Hendrikingenstau, vor mehr als 3 Jahren
  4. Super Video!Vielen Dank!

    Von Katjavoelzgen, vor mehr als 3 Jahren
  5. Hallo :)

    es bedeutet so viel wie "missraten" oder "verkümmert". Damit ist gemeint, dass sehr viel mehr Codons (ein Codon besteht aus 3 Basen) gibt als es Aminosäuren gibt. Eine Aminosäure wird manchmal durch verschiedene Codons codiert. Daher kannst du allein von der Aminosäure nicht auf das Codon schließen, da du nicht weißt welches der möglichen Codons zu dieser Aminosäure geführt hat,

    Von Marcel Schenke, vor etwa 4 Jahren
  1. was genau heißt degeneriert?

    Von Danny123, vor etwa 4 Jahren
  2. Hallo :)

    das ist nicht so leicht zu beantworten. Dafür müsstest du die DNA-Länge und die DNA-Sequenz kennen. Denn die vier möglichen DNA-Basen die in dem Strang integriert sind, sind ja unterschiedlich aufgebaut.

    Von Marcel Schenke, vor mehr als 4 Jahren
  3. Kann mir jemand sagen, was die Summenformel der DNA ist??

    Von Virginiabalk, vor mehr als 4 Jahren
  4. Hallo :)

    Der genetische Code ist nicht überlappend. Das bedeutet das ein Triplett oder auch Codon genannt (also 3 Basen nebeneinander)sich nicht mit einem anderen überschneidet. Die 3 Basen dieses Tripletts gehören nur zu diesem einen Triplett. Beispiel: Bei der Basen-Reihe ACTATG heißen die Tripletts ACT und ATG, es werden 2 Aminosäuren verschlüsselt. Es gibt in dem Beispiel nicht das Triplett CTA oder TAT weil die Basen nur in einem Triplett auftauchen dürfen. Bei CTA wäre das C ja Bestandteil vom ACT und von CTA, das geht aber nicht.

    Von Marcel Schenke, vor fast 5 Jahren
  5. Sehr zufrieden mit der Qualität des Videos.. Prima,danke! Aber kannst du bitte noch mehr(die Überlappung)erklären! Ich hab nicht so gut verstanden

    Von Rankh699, vor fast 5 Jahren
  6. sehr gutes video um das wissen nochmal aufzufrischen
    danke!

    Von Tanja Bachs, vor etwa 5 Jahren
Mehr Kommentare

Videos im Thema

DNA und Molekulargenetik (30 Videos)

zur Themenseite

Genetischer Code – Eigenschaften und Bedeutung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Genetischer Code – Eigenschaften und Bedeutung kannst du es wiederholen und üben.

  • Nenne Eigenschaften des genetischen Codes.

    Tipps

    Wozu dient die Code-Sonne?

    Was wird durch den genetischen Code übersetzt?

    GCU verschlüsselt die Aminosäure Alanin.

    Prolin kann durch vier verschiedene Tripletts verschlüsselt werden.

    Lösung

    Der genetische Code regelt die Übersetzung der genetischen Information in Proteine. Proteine werden in unserem Körper jeden Tag zahlreich benötigt. So werden sie z. B. als Enzyme benötigt, die viele Reaktionen in unserem Körper beschleunigen. Durch die Code-Sonne kann leicht abgelesen werden, welches Basentriplett für welche Aminosäure codiert. Dabei codieren mehrere Tripletts für eine Aminosäure, dies nennt man degenerativ. Da diese Form der Übersetzung bei allen Lebewesen vorkommt, nennt man den genetischen Code auch universell.

  • Gib an, für welche Aminosäure das gegebene Triplett codiert.

    Tipps

    Die drei Buchstaben am äußeren Rand der Code-Sonne sind Abkürzungen der Aminosäuren.

    Beginne in der Mitte der Code-Sonne und lese von innen nach außen den Triplettcode ab.

    Lösung

    Bei der Übersetzung eines Tripletts (auch: Codon) der mRNA in eine Aminosäure wird die Code-Sonne zu Hilfe genommen. Der Prozess des Ablesens beginnt in der Mitte der Sonne, man sucht dort zunächst den ersten Buchstaben des Tripletts. Anschließend sucht man im zweiten Kreis (=mittlerer Kreis) der Code-Sonne den zweiten Buchstaben des Tripletts und schließlich im äußeren Kreis den letzten Buchstaben. Es lässt sich nun erkennen, für welche Aminosäure das Triplett codiert. Die Aminosäuren sind am äußeren Rand der Code-Sonne allerdings mit ihren Abkürzungen dargestellt. Kennt man die Abkürzungen der Aminosäuren nicht auswendig, so müssen diese Abkürzungen noch nachgeschlagen werden.

  • Ordne den Eigenschaften des genetischen Codes ihre entsprechende Übersetzung zu.

    Tipps

    Versuche, dir über die Wortbedeutung zu erschließen, welche Erklärung des Begriffes korrekt ist.

    Ein Komma verursacht einen Zwischenraum oder eine Lücke.

    Wäre der genetische Code überlappend, könnte dieselbe Base in mehreren Tripletts vorkommen.

    Lösung

    Der genetische Code dient der Übersetzung der genetischen Information in ein Protein. Er ist universell, kommt also bei allen Lebewesen vor. Außerdem ist der genetische Code nicht eindeutig, man kann anhand einer Aminosäuresequenz nicht eindeutig die zugehörigen DNA-Tripletts bestimmen. Der genetische Code ist degeneriert: Unterschiedliche Tripletts können für die gleiche Aminosäure codieren. Zudem ist der genetische Code kommafrei und nicht überlappend. Das bedeutet, dass die Tripletts lückenlos aneinander anschließen und dass eine Base immer nur Bestandteil von einem Triplett ist.

  • Überlege, warum die DNA-Sequenz nur die Primärstruktur der Proteine vorgibt.

    Tipps

    Wodurch kommt die Tertiärstruktur der Proteine zustande?

    Die Sekundärstruktur eines Proteins wird durch Wasserstoffbrückenbindungen bestimmt.

    Die Ausbildung einer Sekundär- oder Tertiärstruktur wird häufig Faltung genannt. Aber was wird dabei eigentlich gefaltet? Die einzelnen Aminosäuren oder gleich das ganze Protein?

    Lösung

    In der Aminosäuresequenz, also in der Primärstruktur, ist bereits alles angelegt, was das Protein benötigt, um eine Sekundär- und schließlich eine Tertiärstruktur auszubilden.

    Die Primärstruktur bedingt also die Tertiärstruktur.Wasserstoffbrückenbindungen bewirken die Verankerung der Sekundärstruktur eines Proteins. Aminosäurereste ermöglichen die Bindungen, die die Tertiärstruktur stabilisieren.

  • Übersetze den codogenen Strang der DNA in die entsprechende Aminosäuresequenz.

    Tipps

    Der codogene Strang der DNA ist der Strang, der für die Transkription genutzt wird.

    Die m-RNA enthält anstatt der Base Thymin die Base Uracil.

    Der übersetzte RNA-Strang lautet: UGU UUU GAC UCC CGA AGA UAA.

    Die RNA-Sequenz wird nun mithilfe der Code-Sonne in die Aminosäuren übersetzt.

    Beginne mit dem Ablesen der Tripletts in der Mitte der Code-Sonne.

    Lösung

    Gegeben ist der codogene Strang der DNA. Der Strang wird zunächst transkribiert. Entsprechend der komplementären Basenpaarung (Thymin paart sich mit Adenin, Guanin paart sich mit Cytosin) würde folgender Strang entstehen:

    • TGT TTT GAC TCC CGA AGA TAA.
    Da aber in der mRNA nicht die Base Thymin vorkommt, sondern stattdessen die Base Uracil (Adenin paart sich dann entsprechend mit Uracil), muss jedes Thymin im mRNA-Strang durch ein Uracil ersetzt werden. Wir erhalten den mRNA-Strang:

    • UGU UUU GAC UCC CGA AGA UAA.
    Dieser Strang kann nun mithilfe der Code-Sonne in die Aminosäuresequenz übersetzt werden. Es ergibt sich die Sequenz:

    Cys-Phe-Asp-Ser-Arg-Arg (Stop).

  • Beurteile, welche Änderung sich in der Aminosäuresequenz ergibt.

    Tipps

    Es entsteht ein neuer codogener Strang.

    Überlege, wie du diesen Strang ablesen würdest.

    Übersetze die Tripletts in die entsprechende Aminosäuresequenz.

    Der codogene Strang wird zunächst transkribiert.

    Lösung

    Die Insertion einer zusätzlichen Base wird auch als Baseneinschubmutation bezeichnet. Durch den Einbau dieser zusätzlichen Base kommt es zu einer verschobenen Leserichtung. Das erste Triplett heißt nun nicht mehr ACA, sondern TAC. Dadurch ergibt sich auch eine veränderte Aminosäuresequenz. In dem hier gezeigten Beispiel kommt es dazu, dass das dritte Triplett ein Stopcodon (UGA) darstellt. Die Proteinbiosynthese wird also zu einem vorzeitigen Abbruch kommen.