Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Replikation der DNA (Expertenwissen)

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.1 / 66 Bewertungen
Die Autor*innen
Avatar
Lerouret
Replikation der DNA (Expertenwissen)
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Replikation der DNA (Expertenwissen) Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Replikation der DNA (Expertenwissen) kannst du es wiederholen und üben.
  • Nenne die jeweiligen Funktionen der Enzyme und Proteine, welche an der DNA-Replikation beteiligt sind.

    Tipps

    Einige der Enzyme und Proteine tragen ihre Funktion bereits im Namen. Was könnten denn die Aufgaben von Prim-ase, Helik-ase oder dem einzelstrangbindenden Protein sein?

    Die Verknüpfung von DNA-Segmenten, die durch ein Enzym katalysiert wird, nennt man Liga-tion.

    Ein wichtiges Enzym stellt aus einzelnen Nukleotiden sehr große Moleküle her, die aus vielen ähnlichen Untereinheiten zusammengebaut sind. Solche Moleküle heißen Polymere.

    Lösung

    Das Enzym Primase setzt an bestimmten Stellen der DNA-Einzelstränge Primer. Primer sind Nukleotidsequenzen, die den Startpunkt der DNA-Synthese markieren.

    Das Enzym DNA-Polymerase bindet einzelne Nukleotide nach dem Basenpaarungsprinzip durch Wasserstoffbrücken an die Matrize. Damit entstehen aus einem elterlichen DNA-Strang zwei Tochterstränge.

    Das Enzym Ligase verbindet die einzelnen Okazaki-Fragmente des Rückwärtsstrangs zu einem zusammenhängenden Strang.

    Das Enzym Helikase spaltet die Wasserstoffbrückenbindungen zwischen komplementären Basenpaaren. Damit bildet sich eine Öffnung in der DNA, an der die Replikation beginnen kann.

    Einzelstrangbindende Proteine sorgen dafür, dass sich diese Öffnung nicht wieder verschließt. Sie verhindern eine erneute Aneinanderlagerung der, durch Helikase getrennten, Basen.

  • Beschreibe den Ablauf der DNA-Replikation.

    Tipps

    In welcher Reihenfolge können die Enzyme (Helikase, Primase, DNA-Polymerase und Ligase) wirken?

    Die DNA-Replikation beginnt am Replikationsursprung mit der Entspiralisierung der DNA und endet damit, dass sich der Replikationskomplex von den Tochtersträngen löst.

    Lösung
    1. Die DNA-Replikation beginnt am Replikationsursprung. Helikase entwindet die DNA-Doppelhelix und zerlegt sie somit in zwei Matrizen.
    2. Einzelstrangbindende Proteine binden an die Einzelstränge, um eine Wiederanlagerung der Basen zu verhindern.
    3. Das Enzym Primase setzt Primer an die Einzelstränge und markiert damit den Beginn der DNA-Synthese.
    4. Das Enzym DNA-Polymerase katalysiert die Bindung von Nukleotiden an die elterlichen Matrizen. Es synthetisiert vom Primer aus in 5' nach 3' Richtung.
    5. Am Rückwärtsstrang werden die einzelnen Okazaki-Fragmente mithilfe des Enzyms Ligase zu einem Strang verbunden.
    6. Der Replikationskomplex löst sich von den Tochtersträngen. Die DNA liegt nun doppelt im Zellkern vor.
  • Benenne die Bestandteile des Replikationskomplexes.

    Tipps

    Die DNA muss zuerst entwunden werden. Durch welches Enzym wird das bewerkstelligt?

    Wie kannst du den Vor- bzw. Rückwärtsstrang identifizieren? Überlege, welche Bestandteile der DNA-Replikation nur am Rückwärtsstrang zu finden sind.

    Die Gleitklammer ist ringförmig und befindet sich direkt an der DNA-Polymerase.

    Die Primase setzt Primer, die den Start der DNA-Synthese markieren.

    Die voneinander getrennten DNA-Stränge würden sich ohne ESB Proteine direkt wieder miteinander verbinden.

    Lösung

    Die Abbildung zeigt den Replikationskomplex (Replisom) während der DNA-Replikation:

    1. Rückwärtsstrang
    2. Vorwärtsstrang
    3. Helikase
    4. Primase
    5. Primer
    6. Okazaki-Fragment
    7. Einzelstrangbindende Proteine
    8. DNA-Polymerase
    9. Gleitklammer
  • Beschreibe die DNA-Synthese am Rückwärtsstrang.

    Tipps

    Ein gegensätzliches Wort passt in keine Lücke.

    Ein Bestandteil eines Primers ist der Zucker Ribose.

    Der Zucker Desoxyribose ist hingegen ein Bestandteil der Matrize.

    Lösung

    Für die Synthese der neuen DNA-Stränge benötigt die DNA-Polymerase Starthilfe. Diese erhält sie durch das Enzym Primase, welches anhand der DNA-Vorlage kurze Nukleotidsequenzen, sogenannte RNA-Primer, synthetisiert. Am Rückwärtsstrang ist die DNA-Synthese diskontinuierlich, also werden ständig neue Primer benötigt.

    Die DNA-Polymerase startet an einem neuen Primer und liest die Matrize in 3' nach 5' Richtung ab. Der neue Strang wird in 5' nach 3' Richtung synthetisiert bis der alte Primer erreicht wird. Ein solcher Abschnitt zwischen zwei Primern heißt Okazaki-Fragment.

    Der RNA-Primer inmitten des neuen DNA-Strangs wird von dem Enzym Nuklease erkannt und ausgeschnitten. Die freie Stelle zwischen zwei Okazaki-Fragmenten wird von Reparaturenzymen aufgefüllt und durch Ligase verknüpft. Dafür nutzt dieses Enzym das freie Ende des vorherigen Abschnitts als Primer.

  • Erkläre die Unterschiede bei der Replikation von Vorwärts- und Rückwärtsstrang.

    Tipps

    Die Abbildung zeigt den, durch Helikase aufgespaltenen Doppelstrang, den Vorwärtsstrang mit 3'-5'-Richtung und den Rückwärtsstrang mit komplementärer Richtung.

    Häufig werden die Richtungen verwechselt:
    Merke dir am besten einen Countdown zur Fertigstellung eines DNA-Tochterstranges. Die DNA-Polymerase synthetisiert nur vom 5'-Ende zum 3'-Ende.

    Lösung

    Da die DNA-Synthese bei der Replikation nur von 5' in 3' Richtung stattfinden kann, verläuft sie an beiden Einzelsträngen unterschiedlich.

    Vorwärtsstrang
    Der Elternstrang wird von 3' nach 5' Richtung abgelesen und der Tochterstrang von 5' nach 3' Richtung synthetisiert. Das Enzym Primase setzt zunächst einen einzelnen Primer, welcher den Beginn der DNA-Synthese markiert. Von dort aus verknüpft die DNA-Polymerase ununterbrochen Nukleotide miteinander, bis die kontinuierliche Replikation abgeschlossen ist.

    Rückwärtsstrang
    Der Elternstrang verläuft in 5' nach 3' Richtung. Der Tochterstrang müsste also von 3' nach 5' Richtung synthetisiert werden. Da dies nicht möglich ist, wickelt sich der Rückwärtsstrang um den Replikationskomplex. Damit kann immer ein Teil des Stranges in der 3' nach 5' Richtung abgelesen und in 5' nach 3' Richtung synthetisiert werden. Hierzu werden mehrere Primer durch Primase gesetzt. Die Synthese erfolgt diskontinuierlich mithilfe kurzer Stücke, sogenannter Okazaki-Fragmente. Am Ende der Replikation verbindet Ligase alle Okazaki-Fragmente zu einem zusammenhängenden Strang.

  • Vergleiche das Ende der Replikation bei Pro- und Eukaryoten.

    Tipps

    Zirkulär bedeutet „kreisförmig“ – Eselsbrücke: Die Zeichnung eines Kreises mit einem Zirkel.
    Die Bedeutung von „linear“ erschließt sich bei Betrachtung eines Lineals.

    Ein Telomer ist eine sich wiederholende, nicht kodierende Nukleotidsequenz am Ende eines Chromosomens.

    Ohne Telomerase würde bei jeder Replikation ein großes Stück DNA an den Telomeren verloren gehen. Zellen wären nur begrenzt teilbar und würden über kurz oder lang absterben. Daher fügt die Telomerase etwas zu den bestehenden Telomersequenzen hinzu.

    Lösung

    Eukaryoten haben lineare DNA mit Telomeren an den Enden. Diese bestehen aus repetitiven, also sich wiederholenden Nukleotidsequenzen. Sie können Telomerasen an sich heranziehen. Diese Enzyme enthalten eine RNA-Matrize, welche komplementär zur Telomersequenz ist.

    Da der DNA-Replikationskomplex eine Vorlage benötigt, die länger ist als der eigentliche DNA-Strang, fügt die Telomerase einige repetitive Sequenzen an den Matrizenstrang an. Diese zusätzlichen Sequenzen ermöglichen den Abschluss der DNA-Replikation durch die DNA-Polymerase.

    Prokaryoten verfolgen eine andere Strategie. Sie besitzen zirkuläre DNA. Es gibt keine Telomere und damit auch keine Probleme bei der Beendigung der DNA-Replikation. Die Replikation startet meist von nur einem Replikationsursprung aus, wohingegen eukaryotische Replikation viele Ursprünge hat.

    Die Telomer-Verkürzung wird in Zusammenhang mit der Zellalterung gebracht. Daher befassen sich moderne Anti-Aging-Experimente damit, ob eine Steigerung der Telomeraseaktivität das Altern verlangsamt. Telomerase ist nicht in allen Zellen aktiv, sondern nur in denen, welche mit einer schnellen Zellteilung assoziiert sind wie Keimzellen, Knochenmarkzellen, einige Immunzellen oder auch Tumorzellen.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.374

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.944

Lernvideos

37.093

Übungen

34.339

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden