30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Prozessierung – RNA-Modifikation bei Eukaryoten 07:03 min

Textversion des Videos

Transkript Prozessierung – RNA-Modifikation bei Eukaryoten

Hallo! Heute unternehmen wir eine Reise in deinen Körper. Hast du gewusst, dass im menschlichen Organismus über 300.000 verschiedene Proteine vorkommen? Diese Zahl wird zumindest geschätzt. Allerdings haben wir nur 30.000 bis 40.000 Gene, die für diese Proteine kodieren. Wie ist das möglich? Das Geheimnis ist, dass nach der Transkription noch einige Modifikationen an der RNA stattfinden: die sogenannte „RNA-Prozessierung“. Das klingt zunächst etwas kompliziert. So ist es aber gar nicht. Ich werde dir zeigen, was bei der RNA-Prozessierung passiert und in welche Teilschritte sie sich gliedert. So wirst du es ganz leicht verstehen und dir merken können. Fangen wir erst einmal bei der Proteinbiosynthese an, also dem Weg von der DNA zum fertigen Protein. Sie gliedert sich in Transkription, also dem Umschreiben von DNA in RNA und der anschließenden Translation, dem Übersetzen von RNA zum Protein. Die RNA-Prozessierung schaltet sich genau zwischen Transkription und Translation, weshalb sie auch als „post-transkriptionelle Modifikation“ bezeichnet wird. Dabei musst du zunächst einmal wissen, dass die im Zellkern transkribierte mRNA lediglich eine Art Skizze ist: die Prä-mRNA. Sie muss auf verschiedenste Arten verändert werden, damit aus ihr viele verschieden Proteine entstehen können. Kommen wir zu den ersten beiden Teilschritten der RNA-Prozessierung: dem Capping und der Polyadenylierung. Dabei wird die Prä-mRNA an beiden Enden, dem 5’- und dem 3’-Ende, vor dem Abbau durch Enzyme geschützt. Das Capping schützt das 5’-Ende der Prä-mRNA durch das Anbinden eines modifizierten Guanin-Nukleotids, einer 5’-Cap-Struktur. Sie schützt quasi wie eine Kappe das 5’-Ende. Es erfolgt co-transkriptionell, also während der Transkription. Im zweiten Schritt, der Polyadenylierung, wird das 3’-Ende geschützt: durch einen sogenannten Poly-A-Schwanz. Dieser besteht aus einer lange Kette aus 50 bis 200 Adeninnukleotiden. Diese Modifikation erfolgt post-transkriptionell, also nach Beendigung der eigentlichen Transkription. Beide Teilschritte der Modifikation sind gleichzeitig Reifungssignale, die anzeigen, dass die mRNA ins Zytoplasma exportiert werden kann. Außerdem sind sie notwendig, damit ein Ribosom an das 5’-Ende der mRNA binden und mit dem Zusammenbau des Proteins beginnen kann. Eine weitere post-transkriptionelle Modifikation ist das RNA-Editing. Dabei werden Nukleotide eingefügt oder entfernt und Nukleobasen oder Ribosen chemisch verändert. So können nachträglich die Nukleotidsequenzen der mRNA verändert und viele verschiedene Proteinsynthesen ermöglicht werden. Eine letzte Form der Prozessierung ist das Spleißen. Dabei werden nichtcodierende Introns aus dem Mosaikgen herausgeschnitten. Die Introns bilden Schleifen, sodass die Enden der codierenden Exons dicht beieinander liegen und zusammengefügt werden können. Das Spleißen übernimmt ein großer Enzymkomplex, das Spleißosom. Sind diese vier Schritte abgeschlossen, erfolgt der Export der fertigen mRNA durch die Kernporen und der Transport zum Ribosom. Hier beginnt der eigentliche Zusammenbau der Proteine nach der Vorgabe durch die mRNA: die Translation. Schauen wir uns zum Schluss noch den Vergleich mit der Proteinbiosynthese bei Prokaryoten an. Der wohl größte Unterschied ist, dass bei Prokaryoten keine Prozessierung der mRNA stattfindet. Das macht die mRNA kurzlebiger, da die Enden nicht geschützt sind. Außerdem werden bei den Prokaryoten Proteine wesentlich schneller produziert. Grund dafür ist: Die DNA der Prokaryoten liegt frei im Zytoplasma vor und die Translation findet in unmittelbarer Nähe statt. Zudem muss die mRNA auch nicht gespleißt werden. Es gibt keine Introns. Fassen wir noch einmal zusammen: Die mRNA bei Eukaryoten wird vierfach modifiziert. Das nennt man Prozessierung. Die Enden werden durch eine 5’-Cap-Struktur und den Poly-A-Schwanz vor Abbau geschützt. Durch Editing werden Nukleotide herausgeschnitten oder hinzugefügt und Strukturen chemisch verändert. Beim Spleißen werden nicht-codierende Introns des Mosaikgens in Schleifen herausgeschnitten. Alle Modifikationen erfolgen im Zellkern. Mit Ausnahme der 5’-Cap-Struktur sind alle post-transkriptionell. Nach Umwandlung der Prä-mRNA in die mRNA wird diese zum Ribosom transportiert. Die Translation beginnt. Bei der Proteinbiosynthese der Prokaryoten gibt es keine Prozessierung. Die mRNA hat keine Introns und ist viel kurzlebiger. Proteine werden in unmittelbarer Nähe zur DNA und viel schneller translatiert. Daher ist die Varianz am Protein auch viel kleiner als bei Eukaryoten. Diese Modifikationen der RNA ermöglichen es, dass am Ende aus 30.000 bis 40.000 Genen im Erbmaterial rund 300.000 Proteine entstehen, durch die vielen verschiedenen Modifikationen in der RNA-Prozessierung. Tschüss und bis zum nächsten Mal.

4 Kommentare
  1. Hallo Sahra A.,
    Splicing bedeutet, dass nichtcodierende Bereiche, sogenannte Introns, aus der prä-mRNA herausgeschnitten werden.
    Alternatives Splicing bedeutet, dass es sich erst während des Spleißvorgangs entscheidet, welche Sequenzen Introns bzw. Exons sind. So kann aus einem RNA-Transkript viele verschiedene, jedoch verwandte Proteine gebildet werden. Es gibt verschiedene Formen des alternativen Splicings, z.B. kann ein Exon übersprungen werden.
    Bei weiteren Fragen kannst du dich auch gerne an den Hausaufgaben-Chat, Mo-Fr 17-19 Uhr, wenden. Liebe Grüße aus der Redaktion

    Von Tatjana Elbing, vor 8 Monaten
  2. Hallo,
    Ich hätte eine Frage bezüglich direses Videos, nämlich was ist der Unterschied zwischen RNA-Speißen und alternatives RNA-Spleißen? In dem Viedeo ewurde darüber leider nichts berichtet und ich hoffe auf eine gute Antwort auf meine Frage. :-)

    Von Sahra A., vor 8 Monaten
  3. ich brauche video transckript

    Von Accessferdous, vor mehr als 2 Jahren
  4. Sehr gut gemacht!

    Von Msellhorn97, vor mehr als 4 Jahren

Videos im Thema

DNA und Molekulargenetik (30 Videos)

zur Themenseite