30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Genmutation – Formen und Ursachen 12:34 min

Textversion des Videos

Transkript Genmutation – Formen und Ursachen

Hallo, in diesem Video gehen wir genauer auf die Genmutation ein. Um alles zu verstehen, solltest du bereits über Grundwissen zum Thema Aufbau der DNA und Proteinbiosynthese verfügen, da dieses Video auf diesen Grundlagen aufbaut. Du wirst Folgendes in diesem Video lernen: Als erstes besprechen wir die Definition einer Mutation. Danach besprechen wir die Arten von Mutationen. Wir befassen uns mit den Folgen von Mutationen und nehmen als Beispiel die Sichelzellanämie und Mukoviszidose. Mutationen sind Änderungen der genetischen Information, also Änderungen in der Erbsubstanz. Die Ursache kann eine spontane Änderung einer Base sein oder kann durch Mutagene verursacht werden. Zu den Mutagenen zählen zum Beispiel UV-Strahlung, Röntgenstrahlung oder verschiedene Chemikalien. Mutationen können anhand der Ebene, auf der die Veränderung in der Erbsubstanz stattgefunden hat, in Genom-, Chromosom- und Genmutation eingestuft werden. Unter einer Genommutation versteht man die Veränderung der Chromosomenanzahl. Dies ist zum Beispiel beim Down-Syndrom, auch Trisomie 21 genannt, der Fall, bei dem das Chromosom 21 dreimal statt zweimal vorkommt. Unter einer Chromosommutation versteht man die Veränderung der Chromosomenstruktur. Eine Genmutation ist die Veränderung der Basensequenz eines Gens. Wir gehen jetzt näher auf die Genmutation ein. Genmutationen lassen sich in zwei Gruppen einteilen, die erste Form ist die Punktmutation, diese wird auch mit dem Fachbegriff Substitution bezeichnet. Das Wort bedeutet so viel wie „Austausch“ und kommt vom englischen Wort für „ersetzen“. Die zweite Form ist die Rastermutation, diese wird auch als Leserasterverschiebung bezeichnet. Dabei kann es sich entweder um eine Insertion handeln, das Wort kommt vom englischen Wort für „einfügen“, oder um eine Deletion, dieses Wort kommt vom Englischen für „entfernen“. Wir kommen zuerst auf die Punktmutation, beziehungsweise die Substitution zu sprechen. Man versteht darunter den Ersatz eines Nukleotids und seines Partners im komplementären DNA-Strang durch ein anderes Nukleotidpaar. Dadurch ergibt sich eine veränderte Basensequenz. Dieses Bild veranschaulicht eine DNA-Sequenz. Wird ein Nukleotid ausgetauscht, so wird nach der DNA-Replikation auch das komplementäre falsche Nukleotid vorliegen. Wir gehen jetzt darauf ein, welche Folgen eine Punktmutation haben kann. Es kann sich um eine stumme Mutation, eine Missense-Mutation oder eine Nonsense-Mutation handeln. Eine Punktmutation kann zum Beispiel eine stille Mutation sein. Das heißt, das veränderte Triplett codiert für die gleiche Aminosäure, dies ist wegen der Redundanz des genetischen Codes möglich. Das heißt, mehrere Basen-Tripletts codieren die gleiche Aminosäure. Außerdem handelt es sich in der Regel um eine stumme Mutation, wenn die Mutation in einem nicht-codierenden Bereich eines Gens erfolgt, also in einem Intron. Wir nehmen jetzt als Beispiel das Triplett GGC. Wir gehen davon aus, dass das Nukleotid mit dem Cytosin eine Mutation aufweist. Fälschlicherweise wurde ein Nukleotid mit Uracil eingebaut. Wird dieses Triplett auf der mRNA umgesetzt in eine Aminosäuresequenz, so wird die Aminosäure Glycin gebildet. Sowohl GGC als auch GGU codieren die Aminosäure Glycin, es handelt sich also um eine stumme Mutation. Wir kommen jetzt zur Missense-Mutation. In der Regel handelt es sich bei Mutationen in den codierenden Bereichen des Gens um sogenannte Missense-Mutationen. Der Begriff leitet sich vom englischen Wort für „Fehlsinn“ ab. Das veränderte Triplett codiert immer noch für eine Aminosäure, aber für eine falsche Aminosäure. Wir bleiben bei dem Beispiel bei dem Basentriplett GGC auf der mRNA. Wir gehen davon aus, dass das erste Nukleotid eine Mutation aufweist und statt Guanin Adenin vorliegt. Während GGC für die Aminosäure Glycin codiert, codiert das Triplett AGC für die Aminosäure Serin. Das heißt, es wird die falsche Aminosäure eingebaut. Eine Missense-Mutation kann eine geringe Folge haben, wenn die Aminosäure ähnliche Eigenschaften zu der ausgetauschten Aminosäure hat. Auf diese Weise kann ein funktionierendes Protein entstehen. Die Mutation kann auch zu einem funktionslosen beziehungsweise defekten Protein führen, wenn die ausgetauschte Aminosäure Veränderungen an einem funktionell wichtigen Bereich des Proteins hervorruft. In selteneren Fällen kann die Veränderung der Aminosäuresequenz zu einer Verbesserung des Proteins führen, die Vorteile für den Organismus bringt. Viel häufiger kommen jedoch Proteine zustande, die ihre Funktion weiterhin ausführen können, aber eine verminderte Aktivität aufweisen. Wir kommen jetzt zur Nonsense-Mutation. In diesem Fall wird ein verändertes Triplett in ein Stopcodon umgewandelt. Zum Beispiel UAG. Wir nehmen als Beispiel das Basentriplett AAG auf der mRNA. Dieses Triplett codiert für die Aminosäure Lysin. Wir nehmen jetzt an, dass am ersten Nukleotid eine Mutation stattgefunden hat, sodass Uracil statt Adenin vorliegt. Das Triplett UAG ist ein Stopcodon. Dadurch wird die Translation frühzeitig abgebrochen, dies führt immer zu einem defekten Protein. Wir kommen jetzt zur Rastermutation. Die erste Form ist die Insertion. Hier wird ein Nukleotid in die DNA eingefügt. Die zweite Art der Rastermutation ist die Deletion. Hier wird ein Nukleotid aus der DNA entfernt. Beide haben eine Verschiebung des Leserasters zur Folge. Wir besprechen jetzt die Insertion etwas genauer. Als Beispiel nehmen wir die DNA-Sequenz GAGCUG, die mRNA wird als Serie von Basentripletts gelesen. Das Basentriplett GAG codiert für die Aminosäure Glutaminsäure. Das Triplett CUG codiert für die Aminosäure Leucin. Wir gehen jetzt davon aus, dass eine Insertion an dieser Stelle stattfindet. Es wird ein Cytosin nach dem Guanin eingebaut. Dadurch verschiebt sich das Leseraster. Wir erhalten somit die Tripletts GCA, dieses codiert für die Aminosäure Alanin und GCU, auch dieses Triplett codiert für die Aminosäure Alanin. Wir haben also statt Glutamin und Leucin die Aminosäuren Alanin und Alanin. Das Guanin, das in der normalen Sequenz die letzte Base im zweiten Triplett bildet, wird jetzt die erste Base im darauffolgenden Triplett bilden. Wir kommen zur Deletion. Wir gehen davon aus, dass die letzte Base im ersten Triplett entfernt wird. Somit erhalten wir statt dem Triplett GAG das Basentriplett GAC. Dieses codiert nicht mehr für Glutaminsäure, sondern für Asparaginsäure. Die darauffolgende Base würde zum zweiten Triplett gezählt werden. Wäre dies zum Beispiel ein Guanin, so würde das Triplett UGG für Tryptophan codieren, aber auf gar keinen Fall ein Leucin. Eine Rastermutation kann, je nachdem welche Folge sie hat, entweder eine Missense-Mutation sein und ein defektes Protein hervorbringen oder eine Nonsense-Mutation sein. In diesem Beispiel haben wir die DNA-Sequenz UCAGCC. Das erste Triplett codiert Serin, das zweite Triplett codiert Alanin. Wenn wir davon ausgehen, dass zum Beispiel eine Deletion am ersten Cytosin stattfindet, dann haben wir auf einmal das erste Triplett UAG. Dabei handelt es sich um ein Stopcodon. Die Translation wird frühzeitig abgebrochen. Wir behandeln jetzt als Beispiel die Sichelzellanämie. Es handelt sich um eine rezessive Erbkrankheit. Bei den betroffenen Personen nehmen die Erythrozyten, also die roten Blutkörperchen, in sauerstoffarmem Blut eine sichelförmige Gestalt an. Die Folgen sind verstopfte Blutkapillaren, mangelhafte Sauerstoffversorgung der Organe und Anämie. Die Ursache der Sichelzellanämie ist eine Punktmutation im Gen des Blutfarbstoffs Hämoglobin. Durch diesen Aminosäureaustausch ist das Hämoglobin bei Sichelzell-Patienten in seiner Funktion eingeschränkt. Es handelt sich also um eine Missense-Mutation. Als nächstes Beispiel besprechen wir anhand der Mukoviszidose, wie unterschiedliche Mutationen in einem Gen zu der gleichen Krankheit führen können. Die Mukoviszidose ist eine rezessive Erbkrankheit, bei der in verschiedenen Organen eine erhöhte Schleimproduktion stattfindet. Die Folgen sind Atemnot, chronische Bronchitis, häufige Lungenentzündungen und andere Symptome. Die Ursache ist ein Defekt im Kanalprotein für Chloridionen. Man hat bereits über 600 verschiedene Mutationen im CFTR-Gen identifiziert, die für die Krankheit verantwortlich sind. Dieses Gen codiert den Chloridionenkanal. Bei über 70 Prozent der Patienten fehlt ein bestimmtes Triplett im Exon zehn. Dadurch fehlt die Aminosäure Phenylalanin an einer bestimmten Position im Kanal. Durch die veränderte Tertiärstruktur kann das Protein nicht in die Membran eingebaut werden. Andere Mutationen erlauben einen Einbau in die Membran aber sie haben eine verminderte Funktion des Kanalproteins zur Folge. Auch hier handelt es sich um eine Missense-Mutation. Wir kommen zur Zusammenfassung: Du weißt jetzt, dass man Mutationen in Gruppen einteilen kann, je nachdem, ob sie auf Genom-, Chromosom- oder Genebene stattfinden. Außerdem weißt du jetzt, dass Genmutationen Punktmutationen oder Rastermutationen sein können. Du weißt auch, dass Rastermutationen entweder durch eine Insertion oder eine Deletion stattfinden. Du weißt jetzt, dass man Genmutationen nach ihrer Folge in stumme Mutationen, Missense-Mutationen und Nonsense-Mutationen einordnen kann. Als Beispiele für Erbkrankheiten, die auf Genmutationen zurückzuführen sind, haben wir die Sichelzellanämie und die Mukoviszidose besprochen. Danke für deine Aufmerksamkeit. Tschüss, bis zum nächsten Video!

19 Kommentare
  1. Default

    Mehr Infos über Chromosomenmutationen wäre sehr gut

    Von Itslearning Nutzer 2535 58051, vor etwa einem Jahr
  2. Img 20151011 002133

    Das rettet mein Leben! danke ^^

    Von Juliane G., vor mehr als 3 Jahren
  3. Default

    Ich wüsste gerne ein paar Beispiele für chemiekalien,die zu einer Mutation führen.

    Von Jenneka87, vor mehr als 3 Jahren
  4. Default

    Sehr gut erklärt Danke :)

    Von Mandeep B., vor fast 4 Jahren
  5. Marcel

    Hallo :)
    Eine Mutation bezieht sich auf den Zustand der DNA und nicht auf einen Prozess wie Replikation oder Transkription.
    Eine stumme Mutation meint ja eine Veränderung des Erbgutes (der DNA) ohne dass dies Auswirkungen auf den Phänotyp hat. Dies ist natürlich besonders in nicht codierenden Bereichen der Fall (weil sie raus geschnitten werden wie du bereits gesagt hast), kann jedoch aber auch in codierenden Bereichen auftreten. Zudem sollte man betonen, dass auch nicht codierende Bereiche Einflüsse auf den Phänotyp haben.

    Von Marcel Schenke, vor etwa 4 Jahren
  1. Default

    Ab 3:45 wird gesagt, dass eine stumme Mutation meistens in einem nicht codierenden Bereich der DNA stattfindet.Dies ist aber doch nur während der Replikation möglich, da bei der Transkription die Introns rausgeschnitten werden.Oder habe ich es falsch verstanden?

    Von Dina Chouli, vor etwa 4 Jahren
  2. Default

    Super erklärt! Weiter so :)

    Von Msellhorn97, vor mehr als 4 Jahren
  3. Default

    Sorry aber das neue Design ist sooo schlecht.

    Von Bdeurope, vor mehr als 4 Jahren
  4. Marcel

    Hallo Steve :)
    Die Abkürzung "Trp" steht für die Aminosäure Tryptophan, nicht für den Begriff Tryptin.
    Nonsense-Mutation meint übrigens die Veränderung des Tripletts zu einem Stopp-Codon, das Protein ist daher wahrscheinlich funktionslos da es nicht vollständig synthetisiert wird. Die Missens-Mutation meint hier die Veränderung eines Tripletts zu einem neuen Triplett. Bei der Rastermutation wird aber eine Base komplett entfernt, sodass nicht nur ein Triplett mutiert, sondern auch alle nachfolgenden Tripletts. Das führt sehr wahrscheinlich zu einem Defekt des Proteins (im Sinne der ursprünglichen Funktion). Dass die neue Kombination der Tripletts eine andere Funktion ermöglichen ist eher unwahrscheinlich.

    Von Marcel Schenke, vor fast 5 Jahren
  5. Default

    Und bei 9:14 ist es sehr wahrscheinlich, dass ein Funktionloses Protein entsteht , muss aber nicht sein , es hat dann eine andere Funktion und ist in dieser Hinsicht nicht zwingend "defekt" bei einer Missense ist der defekt doch viel wahrscheinlicher ... habe ich das richtig verstanden?

    Von Steve K., vor fast 5 Jahren
  6. Default

    Trp ist doch Tryptophan ... oder nennt man das auch tryptin? (8:45)

    Von Steve K., vor fast 5 Jahren
  7. Jan

    Hallo,
    es gibt zu diesen Thema leider noch kein Video. Allerdings bemühen wir uns solch ein Video so schnell wie möglich online zu bringen. Zu Genommutationen gibt es auch folgendes Video. Dabei wird eine spezielle Genommutation am Beispiel des DOWN-Syndroms erklärt.
    http://www.sofatutor.com/biologie/videos/genetische-krankheiten-trisomie-21

    Von Jan Ruppe, vor mehr als 5 Jahren
  8. Default

    Hallo
    sehr schönes viedeo :)
    Gibt es aber auch Videos zur chromosomenmutation oder Genommutation?

    Von Issayasp, vor mehr als 5 Jahren
  9. Default

    Sehr gutes Video und Super Beispiele! :)

    Von Barbarabrunner, vor mehr als 5 Jahren
  10. Default

    Ausführlich und anschaulich mit Beispielen erklärt!

    Von Sonstewer, vor etwa 6 Jahren
  11. Default

    saubere arbeit, ich wünschte ich hätte auch solch fundiertes wissen

    Von Captain Xiyan, vor etwa 6 Jahren
  12. Default

    Sehr gut verständlich!

    Von Deleted User 37203, vor etwa 6 Jahren
  13. Default

    Sehr gut erklärt! Vielen Dank!

    Von Deleted User 51278, vor mehr als 6 Jahren
  14. Default

    Spitze erklärt!!! Danke!!

    Von Green Spirit, vor mehr als 6 Jahren
Mehr Kommentare

Videos im Thema

DNA und Molekulargenetik (31 Videos)

zur Themenseite