Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Fotoeffekt

Der Fotoeffekt beschreibt die Wechselwirkung von Licht mit Festkörpern. Erfahre, wie die Gegenfeldmethode die Energie der Photonen bestimmt und warum Austrittsarbeit und Frequenz eine entscheidende Rolle spielen. Interessiert? Das und vieles mehr erfährst du im folgenden Text!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Fotoeffekt

Was beschreibt der Fotoeffekt?

1/5
Bereit für eine echte Prüfung?

Das Photoeffekt, Fotoeffekt Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 4.9 / 30 Bewertungen
Die Autor*innen
Avatar
Physik-Team
Fotoeffekt
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Grundlagen zum Thema Fotoeffekt

Fotoeffekt – Physik

Du weißt bereits, dass man Licht nicht nur als elektromagnetische Welle, sondern auch als Teilchen beschreiben kann. Diese Teilchen, die auch als Photonen bezeichnet werden, haben eine diskrete Energie, die auf Materie übertragen werden kann. Das wird unter anderem mit dem sogenannten Fotoeffekt beschrieben. Doch was genau ist der Fotoeffekt eigentlich? Wann kommt es zum Fotoeffekt? Diese Fragen wollen wir im Folgenden klären.

Fotoeffekt – Definition

Der Fotoeffekt, der auch als fotoelektrischer Effekt bezeichnet wird, beschreibt die Wechselwirkung zwischen Photonen und einem Festkörper. Dabei werden bei Lichteinstrahlung Photonen vom Festkörper absorbiert, also aufgenommen. Unter bestimmten Bedingungen können dadurch Elektronen aus den Bindungen des Festkörpers herausgelöst werden oder zur Leitfähigkeit des Materials beitragen. Dabei unterscheidet man zwischen dem äußeren und dem inneren Fotoeffekt:

  • Der äußere Fotoeffekt tritt an den Oberflächen von Metallen und Halbleitern auf. Bei Bestrahlung werden Elektronen aus den Bindungen der Oberfläche herausgelöst. Anwendung findet der äußere Fotoeffekt zum Beispiel in Fotokathoden, mit denen Photonen detektiert werden können.
  • Der innere Fotoeffekt tritt in Halbleitern auf. Dabei werden bei Bestrahlung keine Elektronen herausgelöst – stattdessen werden durch die Photonenenergie sogenannte Energie-Loch-Paare erzeugt. Diese erhöhen die Leitfähigkeit des Materials. Der innere Fotoeffekt ist die Grundlage für die Funktionsweise von Solarzellen.

Im Folgenden konzentrieren wir uns auf den äußeren Fotoeffekt. Wir wollen untersuchen, unter welchen Bedingungen Elektronen aus der Festkörperoberfläche gelöst werden und welche Energie die Elektronen anschließend aufweisen.

Teste dein Wissen zum Thema Photoeffekt, Fotoeffekt!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Fotoeffekt – Versuch

Die sogenannte Gegenfeldmethode ist ein geeigneter Versuch zur Untersuchung der auftretenden Energien beim Fotoeffekt. Grundsätzlich besteht der Versuchsaufbau aus einer Lichtquelle, mit der eine Fotozelle bestrahlt wird.

Photoeffekt Gegenfeldmethode Versuchsaufbau

Aus der metallischen Kathode dieser Fotozelle werden durch die Photonen Elektronen herausgelöst – das ist ja gerade der äußere fotoelektrische Effekt. Diese Elektronen werden zur Anode hin beschleunigt. Auf diese Weise wird ein Fotostrom erzeugt. Die zugehörige Stromstärke IFotoI_\text{Foto} können wir messen. Allerdings verrät uns diese nichts über die Energie der Photonen. Daher müssen wir noch einen Trick anwenden: das Gegenfeld.

Photoeffekt Funktion des Gegenfeldes

Wir legen also eine Gegenspannung UGU_\text{G} so an, dass der Minuspol an der Anode und der Pluspol an der Kathode anliegt. Dadurch entsteht ein elektrisches Feld, das der Bewegungsrichtung der Elektronen entgegenwirkt. Mit steigender Gegenspannung nimmt somit der Photonenstrom ab. Nun wählen wir die Spannung UGU_\text{G} so, dass wir gerade so keinen Photonenstrom mehr detektieren.

In diesem Fall ist die Arbeit WelW_\text{el}, die durch das Gegenfeld an einem Elektron verrichtet wird, genauso groß wie die kinetische Energie EkinE_\text{kin}, die ein Elektron nach Herauslösen aus der Metalloberfläche hat. Es gilt also:

Wel=EkinW_\text{el}=E_\text{kin}

Diese Arbeit WelW_\text{el} des elektrischen Feldes (manchmal auch als elektrische Energie EelE_\text{el} bezeichnet) können wir berechnen, wenn wir die angelegte Gegenpannung UGU_\text{G} kennen. Es gilt:

Wel=UGeW_\text{el}=U_\text{G} \cdot e

Hier ist ee die Elementarladung, die jedes Elektron trägt (e=1,60221019 As)\left( e = \pu{1,6022*10^{-19} As} \right) . Diese Formel können wir mit der kinetischen Energie der Elektronen gleichsetzen:

UGe=EkinU_\text{G} \cdot e = E_\text{kin}

Über diesen Zusammenhang können wir also mithilfe der Gegenfeldmethode die kinetische Energie der Elektronen berechnen, denn UGU_\text{G} und ee kennen wir.

Wir wollen die Gegenfeldmethode nun dazu nutzen, um herauszufinden, ob die Frequenz des Lichts einen Einfluss auf die Energie der Photonen und somit auf den Energieübertrag auf die Elektronen hat. Also führen wir das Experiment für verschiedene Frequenzen des Lichts durch. Außerdem wenden wir die Gegenfeldmethode nicht nur auf ein Kathodenmaterial an, sondern auf zwei: Kalium und Kupfer. Wenn wir schlussendlich die für EkinE_\text{kin} ermittelten Werte in einem Diagramm auftragen, erhalten wir den folgenden Graphen:

Photoeffekt Diagramm mit Funktion

Wir sehen, dass die kinetische Energie EkinE_\text{kin} proportional zur Frequenz ff des Lichts ist, also:

EkinfE_\text{kin} \propto f

Mit einer Konstanten CC erhalten wir:

Ekin=CfE_\text{kin} = C \cdot f

Wir haben die Geraden bereits so verlängert, dass wir die y-Achsenabschnitte erhalten. Diese bezeichnen wir als WA,KaliumW_\text{A,Kalium} und WA,KupferW_\text{A,Kupfer}.

Wie wir sehen, ist die sogenannte Austrittsarbeit WAW_\text{A} materialspezifisch – denn sie unterscheidet sich für Kalium und Kupfer. Die Austrittsarbeit beschreibt, wie viel Energie aufgebracht werden muss, um ein Elektron aus einem Festkörper zu lösen. Und das ist genau das, was bei dem äußeren Fotoeffekt passiert. Die Energie des Photons wird also nicht vollständig in kinetische Energie des Elektrons umgewandelt, weil ein Teil der Energie dafür aufgewendet werden muss, das Material zu verlassen. Wir müssen also die Austrittsarbeit von der Energie des Photons abziehen:

Ekin=CfWAE_\text{kin}=C \cdot f - W_\text{A}

Dabei müssen wir für WAW_\text{A} die Austrittsarbeit des jeweiligen Materials einsetzen. Die Konstante CC ist aber für alle Materialien gleich. Sie wird auch als plancksches Wirkungsquantum hh bezeichnet. Insgesamt erhalten wir also:

Ekin=hfWAE_\text{kin}=h \cdot f - W_\text{A}

Dabei können wir den Term hfh \cdot f als Energie des Photons zusammenfassen:

EPhoton=hfE_\text{Photon}=h \cdot f

Nach EPhotonE_\text{Photon} umgestellt erhalten wir die folgende Energiebilanz:

EPhoton=Ekin+WAE_\text{Photon}=E_\text{kin}+W_\text{A}

Durch die Energie des Photons wird also das Elektron aus dem Festkörper gelöst – hierfür muss die Energie WAW_\text{A} aufgebracht werden – und anschließend bewegt es sich mit der kinetischen Energie EkinE_\text{kin}. Die Energie des Photons ist abhängig von der Frequenz des Lichts.

Fotoeffekt – Zusammenfassung

Im Folgenden werden die wichtigsten Erkenntnisse zum Fotoeffekt noch einmal stichpunktartig zusammengefasst:

  • Der Fotoeffekt beschreibt die Wechselwirkung zwischen Photonen und Festkörpern. Dabei unterscheidet man zwischen dem äußeren und dem inneren Fotoeffekt.
  • Der äußere Fotoeffekt kann mithilfe der Gegenfeldmethode analysiert werden.
  • Die Energie der Photonen entspricht der Austrittsarbeit der Elektronen plus ihrer kinetischen Energie.
  • Die Austrittsarbeit ist eine materialabhängige Größe.
  • Die Energie der Photonen hängt von der Frequenz des Lichts ab.

Das Video Fotoeffekt

Was ist der Fotoeffekt und wo wird er verwendet? In Video und Text wird dir der Fotoeffekt auf einfache Weise erklärt. Du lernst außerdem die Gegenfeldmethode kennen und weißt nun, wie man mit ihrer Hilfe die Energie eines Photons bestimmen kann. Auch zum Thema Fotoeffekt gibt es interaktive Aufgaben und ein Arbeitsblatt – du kannst dein neu gewonnenes Wissen also sogleich testen!

Transkript Fotoeffekt

Fotoeffekt

Hallo. In diesem Video sprechen wir über den Fotoeffekt oder äußerer lichtelektrischer Effekt genannt. Dabei sprechen wir nicht mehr von Licht als Wellenerscheinung, sondern von Lichtquanten oder auch Photonen.

Wie du vielleicht schon weißt, wird bei der Wechselwirkung von Licht mit Materie die Energie nicht kontinuierlich, sondern portionsweise übertragen. Man sagt, die Lichtenergie ist “gequantelt”, also portioniert. Heute wollen wir klären, wieviel Energie diese Lichtquanten haben. Dazu werden wir uns die Gegenfeldmethode anschauen, um den Zusammenhang von Frequenz und Energie zu untersuchen.

Bei der Beleuchtung von Fotopapier hat sich bereits ein erster Zusammenhang gezeigt: Blaues Licht belichtet das Papier, wohingegen bei rotem Licht nichts passiert. Die Energieübertragung scheint demnach mit der Farbe des Lichtes, also seiner Wellenlänge bzw. seiner Frequenz, in Verbindung zu stehen.

Um diesen Zusammenhang genauer zu untersuchen hat man die sogenannte Gegenfeldmethode entwickelt. Eine Fotozelle befindet sich in einer evakuierten Röhre und wird mit Licht einer bestimmten Frequenz bestrahlt. Das Licht kann durch die gitterförmige Anode hindurch auf die kalium-beschichtete Kathode fallen. Durch die Bestrahlung werden in diesem Fall nun Elektronen aus der Kathode herausgelöst und beschleunigt. Dieser Effekt ist der äußere lichtelektrische oder auch Foto-Effekt.

Die beschleunigten Elektronen werden von der Anode aufgefangen und man kann über ein Amperemeter den Fotostrom zwischen Anode und Kathode messen. Interessant hierbei ist, dass je näher die Lichtquelle an der Fotozelle ist, desto größer ist der Fotostrom. Wir schlussfolgern also: Mit zunehmender Lichtintensität steigt die Anzahl der ausgelösten Elektronen. Aber Achtung: Wir haben damit noch keine Aussage über die Energie der Elektronen.

Deshalb nutzt man den Gegenfeldtrick. Zwischen Anode und Kathode wird eine regelbare Gegenspannung angelegt, die der Elektronenbewegung entgegenwirkt. Durch das Gegenfeld kommen nur noch Elektronen mit maximaler kinetischer Energie durch. Diese Gegenspannung stellt man genau so ein, dass der Fotostrom gerade zum Erliegen gekommen ist.

Jetzt ist die Energie des elektrischen Gegenfeldes gerade so groß, wie die maximale kinetische Energie der Elektronen. Mit der Energie des Elektrischen Feldes gleich Elektronenladung mal Spannung kann man nun aus dem Wert der Gegenspannung direkt die kinetische Energie der Elektronen bestimmen. Diesen Vorgang wiederholen wir nun mit verschiedenen Frequenzfiltern, da wir ja vermutet haben, dass die Energie der Photonen von der Lichtfrequenz abhängt. Und unsere Vermutung wird bestätigt.

Tragen wir die Wertepaare in ein Frequenz-Energie-Diagramm ein, so zeigt sich eine eindeutige Proportionalität zwischen der kinetischen Energie der Elektronen und der Frequenz des Lichtes. Um eine vollständige Geradengleichung zu schreiben, brauchen wir noch zwei wichtige Größen: den Anstieg und den Ordinatenabschnitt. Den Ordinatenabschnitt erhalten wir, wenn wir die Gerade bis zur senkrechten Achse verlängern. Dieser Wert W_A ist die sogenannte Austrittsarbeit oder auch Ablösearbeit genannt.

Diese Energiedifferenz muss mindestens aufgebracht werden, um überhaupt Elektronen aus der Kathode herauszulösen. Die Austrittsarbeit ist ein charakteristischer Wert für jedes Material. Für Kalium beträgt der Wert rund 2,25 Elektronenvolt für Kupfer dagegen fast das Doppelte. Für Kupfer verschiebt sich also die Gerade nach unten.

Interessant dabei ist, dass der Anstieg der Geraden immer konstant bleibt. Dieser konstante Wert ist das nach Max Planck benannte Plancksche Wirkungsquantum h. h beträgt rund 6,626 mal Zehn hoch minus 34 Joulesekunden und ist eine wichtige Naturkonstante. Es beschreibt das Verhältnis von Energie und Frequenz bei elektromagnetischer Strahlung.

Letztendlich ergibt sich also folgende Geradengleichung: Die kinetische Energie der Elektronen ist gleich dem Planckschen Wirkungsquantum mal der Frequenz abzüglich der Austrittsarbeit.

Das Produkt h mal f ist dabei die Energie eines Photons. Stellen wir die Gleichung danach um, sehen wir, dass die Energie eines Photons h mal f gleich der kinetischen Energie des herausgelösten Elektrons plus die dafür notwendige Austrittsarbeit ist. Ein einzelnes Lichtquant überträgt also seine komplette Energie auf ein einziges Elektron im Material und kann es so herauslösen und beschleunigen. Die Geradengleichung ist auch als Einsteinsche Gleichung bekannt, da Albert Einstein derjenige war, der die Theorien von Max Planck erweiterte und auf die Wechselwirkung von Licht und Materie bezog. Seine Interpretation des Fotoeffektes war einer der Grundsteine für die heutige Quantentheorie und Einstein wurde dafür im Jahre 1921 mit dem Nobelpreis für Physik geehrt.

Ok, was können wir nun über den Fotoeffekt sagen?

Der Fotoeffekt beschreibt das Herauslösen und Beschleunigen von Elektronen aus einer metallischen Oberfläche durch Lichteinstrahlung. Dabei ist die kinetische Energie der Elektronen nicht von der Intensität des Lichtes, sondern von dessen Frequenz abhängig. Mit Hilfe der Gegenfeldmethode können wir über die gemessene Gegenspannung die kinetische Energie der herausgelösten Elektronen bestimmen. Die kinetische Energie ist nach der Einsteinschen Gleichung die Energie der Photonen h mal f abzüglich der Austrittsarbeit W_A. Diese experimentelle Bestätigung der Photonenenergie h mal f war ein Grundstein für die heute aktuelle Quantentheorie elektromagnetischer Strahlung.

Also dann, bis zum nächsten Mal. Tschüß!

Fotoeffekt Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Fotoeffekt kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.317

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.199

Lernvideos

38.699

Übungen

33.508

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden

Pommes der Pinguin hält einen großen gelben Stern in den Händen
Pommes der Pinguin hält einen großen gelben Stern in den Händen
30 Tage kostenlos testen
30 Tage kostenlos testen
Über 1,6 Millionen Schüler*innen nutzen sofatutor Über 1,6 Millionen Schüler*innen nutzen sofatutor
Lernpakete anzeigen
Lernpakete anzeigen
Lernpakete anzeigen